

Journal of Independent Studies and Research (JISR)
Volume 1, Number 2, July 2003

Abstract:
The focus of this Study is on providing an understanding of
buffer overflows, the ways they are exploited, and ways to
prevent attackers from abusing them. Although this problem
has been around for decades, the devastating effects have
been downplayed by the commercial organizations due to
the fact that they require a lot of effort to trace and to fix.
This has led to a flood of software on the market which
claims to be secure, yet can be exploited by wily hackers. As
our reliance on closed-source and proprietary systems
increases, we have to face the facts that there could be a
myriad of security vulnerabilities in the very tools we use to
protect critical data. To be informed is to be better armed.

1 INTRODUCTION

Buffer overflows have been causing serious security
problems for decades. In the last few years the underlying
cause of the majority of computer system and network
exploits and vulnerabilities have been the buffer overflow
condition. As such, this represents or should represent a top
security concern for all entities associated with information
security.

The main objectives of this study are

• To understand the nature of Buffer Overflow
Exploits.

• To get a gist of the motivation behind such attacks,
and the devastation they can cause.

• To gain an understanding of the structure of BOF
Exploits and how to find them.

• To understand ways to avoid introducing BOF’s in
code, and fix existing BOF’s.

1.1 Why Buffer Overflows ?

Buffer overflows were relatively unheard of in the wild before
1996. The landmark that sparked off an interest in buffer
overflows was AlephOne’s article “Smashing the Stack for
Fun & Profit”, which appeared in the Phrack of November
1996 [1]. As a result, since 1997, there has been a steady
increase in the number of buffer overflows discovered and
exploited. It is this steady increase that is the most alarming
trend in the security industry. Although buffer overflows

have been around for more than a decade, they still continue
to be one of the most prevailing security holes in the most
hardened and respected Operating Systems. As of May 12,
2003, there are 13 advisories issued by CERT [2], 9 of which
are related to buffer overflow vulnerabilities. Further, two of
the most damaging worms, CodeRed and SQL Slammer, both
spread by exploiting buffer overflows in IIS and SQL Server
respectively.

2 A THEORETICAL OVERVIEW

2.1 Description of a Buffer Overflow
Simplistically speaking, a buffer overflow occurs when the
program tries to write more data to a memory location than the
space that has been allocated for it. This results in the
adjacent data structures getting corrupted. It may result in a
core dump, or if it is due to an attack by a hacker, it could lead
to execution of arbitrary code.

2.2 A Taxonomy of Buffer Overflow Exploits
It is a practice in sciences that everything is categorized and
classified. Computer sciences are no different in this respect.
If we are to gain a complete understanding of buffer overflow
exp loits, we must be able to classify them into different types.
This requires a sound taxonomy. A taxonomy is defined as “a
system of classification that allows one to uniquely identify
something”. A taxonomy presented by Terry Bruce Gillette [3]
to identify Buffer Overflow Exploits has the following
categories:

2.3 Structure of a Buffer Overflow Exploit
There are many variants of buffer overflow exploits. It is

Buffer Overflow Exploits

Khurram Farooq and Ayaz Uqaili
SZABIST

Karachi, Pakistan

Journal of Independent Studies and Research (JISR)
Volume 1, Number 2, July 2003

beyond the scope of this independent study to mention and
elaborate each of these types separately. But from what has
been observed, all buffer overflow exploits have a few things
in common. These are the things which are the essential
ingredients of a buffer overflow exploit, and it is necessary for
all of them to be present in order to execute a successful
buffer overflow exploit.

2.3.1 Victim Application
This is the application that is under attack. This application
accepts user input and writes it to memory without proper
bounds checking.

2.3.2 Overflow String
This is the string that is supplied by the attacker and written
by the victim application, corrupting adjacent data structures.

2.3.3 Shellcode
This is the “arbitrary code” that is to be executed once the
application has been successfully exploited. Most of the time
it returns a shell to the attacker, hence the name “shellcode”.

3 PRACTICAL APPLICATIONS

3.1 Discovering Buffer Overflows
Discovery of buffer overflows is a very important activity
from the point of view of attackers, as well as from the point of
view of software developers. The attackers can use these
methods to find out new buffer overflows, and write 0-day
exploits for them. This will give them an edge over others and
will open up a whole new vista of machines that are waiting to
be hacked. For the software developers, such techniques
provide them with ways to test the applications they have
developed for buffer overflows. Needless to say that a buffer
overflow in a critical service or a security application is very
dangerous, and it is better that it is discovered by the QA
department, than if it is dis covered by a hacker with less
honorable intentions.

The major methods for finding Buffer Overflows in code are:

3.1.1 Manual Methods

3.1.1.1 Source Code Perusal

3.1.1.1.1 With Original Source Code

The person wishing to find a buffer overflow manually goes
through the source code, looking for occurrences of unsafe
programming practices in the code.

3.1.1.1.2 With Disassembled Code

This is the same as above, the only difference is that the
original source code is not available, and so disassembled
code is used instead.

3.1.1.2 Hit-and-Trial

In this method, the attacker tries a variety of inputs in
different locations in the program. Any erroneous output
could be a potentially exploitable hole.

3.1.2 Automatic Methods
Not much work has been done in automatically searching for
buffer overflows in a binary image. But, this is a very
important area since we rely on mostly closed-source and
proprietary systems for protecting our critical resources. Terry
Bruce Gillette proposed a novel method of discovering
potential holes in a binary image [3].

The method they propose is that they build up compiled
“signatures” of a few dangerous functions which they have
already identified, such as printf(), gets(), etc. Then they scan
the binary image of the target application, and report the
results. The output shows a number of starting points for
checking for buffer overflows.

3.2 Fixing Buffer Overflows & Best Practices

Most of the buffer overflow conditions are hard to find. If
they are found, they are difficult to exploit. If they are
exploited, then it is difficult to control the execution path. But
this does not mean that we start treating buffer overflows
mildly, as has been the case in the past. What is needed is an
approach that attempts to minimize the instances of buffer
overflows found in the wild. The following advice is a starting
point to avoiding buffer overflows:

3.2.1 Advice for Developers

3.2.1.1 Avoiding Dangerous Functions

There are a handful of dangerous functions which are prone
to buffer overflows. The developer should take care not to
use these functions in code. If it is necessary to use these
functions, then proper bound checking must be implemented.

3.2.1.2 Input Sanitization

Any external input, whether from a user or a file, or any
other means should be considered hostile. This is one of the
most critical yet most overlooked aspects of secure code.

3.2.1.3 Code Review Utilities

Numerous code-reviewing utilities are available, which

Journal of Independent Studies and Research (JISR)
Volume 1, Number 2, July 2003

minimize the risk of buffer overflows slipping through the
cracks. The developer should benefit from these utilities so
that his code is more secure.
3.2.2 Advice for End Users
End users are pretty much helpless in the amount of work
they can do to prevent buffer overflows from taking place.
There are some operating systems that disallow execution
from the stack, but this is not a very reliable option, since it
only eliminates stack overflows, and can be bypassed in some
cases.

Barnaby Jack (dark spyrit) [4] has also described an
interesting technique to patch programs for which source
code is not available. He uses the example of Seattle Labs
Mail Server, detects a buffer overflow, exploits it, and
describes a way to patch the executable. This technique could
be applied to other software, but requires expertise which is
well beyond the average end user.

3.3 Avenues for Further Research
Despite the fact that buffer overflows have been around since
the beginning of computer systems, there has been a
comparatively small amount of research in this area. The
following are the areas that have been identified where further
research can be carried out:

3.3.1 Preventing Buffer Overflows
This should be one of the top priority areas for software
vendors, so that they can protect their consumers from the
effects of buffer overflows.

3.3.1.1 Testing Tools

Testing tools can be developed which eliminate, or at the very
least detect buffer overflows.

3.3.1.2 Testing Standards

Research can be carried out in the area of Quality Assurance,
and proper test cases as well as best practices can be
documented to ensure that the software under consideration
does not contain buffer overflows.

3.3.1.3 New Languages

New languages can be developed which provide inherent
bounds checking, such as Java, so that there is no need to
worry about buffer overflows if a developer uses that
language to code an application.

3.3.2 Fixing Buffer Overflows
Since not everyone is up to date with the latest software,
there is a need to devise a method to fix buffer overflows.

3.3.2.1 Patches

Fixing a single buffer overflow does not require a completely
new version. Post release fixes will do just fine.

3.3.2.2 Utilities to Prevent Buffer Overflows

Utilities are available which, when installed, attempt to
prevent buffer overflows by different techniques, such as by
turning off stack execution, or by analyzing code. These can
be researched and identified.

3.3.2.3 Patching Proprietary Software at Home

As already mentioned, Barnaby Jack’s article [4] is a complete
step-by-step guide on patching proprietary binaries. But the
expertise required to do such a thing is not trivial. Further
research on this area could build upon Barnaby Jack’s work,
and find ways which would bring down the level of expertise
required to patch such software.

3.3.3 Discovering Buffer Overflows
There is a dire need for all buffer overflows in the wild to be
discovered, so they can be patched. Research work in this
area would be beneficial to the user community in general,
since it would reduce the number of incidents talking place.

3.3.3.1 Defining Standards

Research can be carried out to create an authentic document,
which can always be referred to when creating test cases for
software. This document would be comprehensive enough to
detect all types of buffer overflows, and can be incorporated
into the policies of a lot of software houses.

3.3.3.2 Automated Discovery Techniques

This is a very poorly researched area. We have presented one
example of an algorithm that can automatically detect buffer
overflows, but it is not very useful. What is needed is an
algorithm that does not identify only buffer overflows, but
rather it identifies exploitable buffer overflows.

3.3.4 Exploiting Buffer Overflows
This area of research is not entirely useful, but it is a fact that

Journal of Independent Studies and Research (JISR)
Volume 1, Number 2, July 2003

has to be faced. Unfortunately, most of the research that is
being done is in this field, as can be observed by browsing to
any security related site.

3.3.4.1 Plug-and-Play shellcode

The ultimate dream of a hacker is a universal shellcode, which
works on all operating systems, under all conditions, with
maximum devastation. This is the aim of the KungFoo project
[5], which tries to create a shellcode that is as generic and as
universal as possible.

4 CONCLUSION

The devastation of Buffer Overflows is mostly due to the
adherence to the Von Neumann architecture, where data and
code are placed in the same memory. As long as such an
architecture is being followed, Stack Overflows can and will
be exploited. It is to be kept in mind that the most common
type of buffer overflows, and the ones which we have
focused, are Stack Overflows. With the advent of new
languages that implement strict bounds checking, and work
on an object-oriented paradigm, coupled with non-executable
pages in memory, Stack Overflows and shellcode will become
a thing of the past. Granted, there will be plenty of legacy
code that would be exploited with Stack Overflows, but the
new frontier awaiting the hacker is the world of Heap
Overflows. Here, the hacker will not insert malicious code;
instead he will attempt to subvert the logic of the program
itself (e.g. mblnAuthenticated=True instead of
mblnAuthenticated=False).

It is high time that the computer community wakes up and
realizes that “Security through Obscurity” is not an issue.
With the Open Source movement in full swing, it is time that
major software vendors start releasing source code for their
operating systems, as this will allow more experts to go
through this code, and make it more secure. If not, then there

are many malicious people with a debugger and a
disassembler, waiting to pounce upon the unwary user. The
code can be encrypted, or obfuscated, but for the machine to
execute it, it has to comprehend it. And if the ma chine can
comprehend it, so can the hacker…

REFERENCES

[1] Elias Levy (AlephOne). “Smashing the Stack for Fun and
Profit”. Online, Phrack Online, Volume 7, Issue 49, File 14
of 16, Available: http://www.phrack.org/, November 9
1996.

[2] CERT Advisories. http://www.cert.org/

[3] Terry Bruce Gillette, “A Unique Examination of the
Buffer Overflow Condition”, http://www.cs.fit.edu/~tr/cs-
2002-12.pdf, May 2002.

[4] Barnaby Jack, aka (dark spyrit), “Win32 Buffer Overflows
(Location, Exploitation, and Prevention)”, Online.
Phrack Online. Volume 9, Issue 55, File 15 of 19.
Available: http://www.phrack.org/, September 9, 1999.

[5] Kungfoo Project.
http://www.harmonysecurity.com/kungfoo.html

