
Journal of Independent Studies and Research (JISR)
Volume 3, Number 1, January 2005 2

A Shared-Key Security Protocol and Its Flaw

Waseem Akhtar Mufti
wmufti@cs.aau.dk

Department of Computer Science, Aalborg University
Fredrik Bajers Vej 7E, 9220 Aalborg, Denmark

Abstract:
Behaviour of cryptographic protocols is notoriously hard
to understand because such a protocol is a concurrent
process and can run with multiple instances in parallel.
Such behaviour becomes more complicated because of
malicious activities of attacker who is always assumed to
be present in the environment of network. Being a public
network (internet) it is very difficult to know who is who?
Such threats need to be handled by a flawless security
protocol which can guarantee to security of computer
systems. In this paper we have analysed and compared the
two versions (flawed and un-flawed) of Needham-
Schroeder Shared-Key (NSSK) protocol and have
provided clear and detailed description to understand its
flaw and how an unflawed version defeats an attacker.

1. INTRODUCTION

Computer technology has been changing our daily lives.
Activities of society and economic system rely on
computer networks for communication, finance, energy
distribution, transportation. The information age continues
to evolve as well as the internet expands; electronic
communication is becoming the preferred means of
interaction for commercial, industrial and private use.
Therefore, it is important to ensure that transmitted
information is not compromised by malicious parties,
especially in areas such as defence, medicine, and
ecommerce, where leakage of information and corruption
could be serious consequences. In fact, in order to protect
against potential threats, communication messages are
frequently secured by cryptographic applications and these
secured exchange of messages are known as security
protocols.

Security protocols are becoming more and more
interesting issues, though much research on this topic
exists. In fact, there are open issues that require more
attention. It is not surprising that much work has been
aimed at analysing of security protocols. In recent years,
some available methods for analyzing security protocols
using process algebra, such as CSP [1], Spi- calculus [2, 5].
These techniques allow us give precise description of
essential properties of concurrent and communication
programs. Moreover, those facilitate modelling and
verifying authentication protocols. Those are the formal
ways, which provide rigorous mathematical analyses of
computer systems to evaluate cryptographic protocols and
security mechanism.

In this paper we discuss the original Needham-Schroeder
Shared-key Protocol (NSSK) [3], invented by Roger M.

Needham and Michael D. Schroeder in 1978, and its attack
which was first observed by D. Denning and G. Sacco [4]
in 1981. It allows individuals communicating over a
network to prove their identity to each other while also
preventing eavesdropping or re-play attacks, and provides
for detection of modification and the prevention of
unauthorized reading. This protocol is few lines of
computer program, since its instances on a network run as
concurrent programs running in parallel therefore its
behaviour becomes very complex. Because of its complex
behaviour the attack was found after quite a long since it
was being used by many organizations which caused huge
financial loss.

In rest of the paper we define few cryptographic terms. In
section 3 we describe how a NSSK protocol works.
Section 4 and 5 describe the actual attack on protocol, few
cryptographic terminologies and blocking of attack.

2. SHARED-KEY AND NONCE

Before going into details of protocol mechanism we define
few concepts.

2.1 Shared-key

Shared-key is used by two or more communicating
principals for both encryption and decryption purpose. It is
generated by one of principals on network. In our example
of NSSK protocol shared-key has been generated by a
Server denoted by S which is a trusted third party. Before
communication begins the principals request to a trusted
third party which generates the key and distributes. A third
party server, which distributes key, is considered to be an
absolutely trusted principal on network. At this point we
are not going into details of how encryption and
decryption is done, which can be simply considered as an
algorithm which is only to known to those principals
involved in communication. A principal may request a
separate shared-key for each principal on network to
communicate with. Details of how the order of send and
receive messages takes place becomes clear as we go
along this article.

2.2 Nonce

Nonce is a fresh random number which can be generated
by any principal and is never repeated, regenerated or
copied by any principal on network. Since it is always a
new random number therefore we call it a fresh number.
Nonces are normally used to guarantee the freshness or
originality of messages sent or received on network. Some

Journal of Independent Studies and Research (JISR)
Volume 3, Number 1, January 2005 3

protocols use Time stamps [4] instead of nonces; NSSK
protocol described here uses nonces.

3 HOW DOES IT WORK? PROTOCOL AS A

CONCURRENT PROCESS

Here we will describe the mechanism of awed version of
NSSK protocol. The original NSSK protocol allows server
to generate a session key Kab for principal A and B.
Through shared-key Kab both principals A and B are able
to communicate with each other. This protocol can be
represented as follows. Figure 1 describes its pictorial
representation.

A, B, S: principal
Na, Nb: nonce
Kas, Kbs, Kab: key
dec : nonce → nonce

Msg 1 A → S : A, B, Na
Msg 2 S → A : {Na, B, Kab, {Kab, A}Kbs}Kas
Msg 3 A → B : {Kab, A}Kbs
Msg 4 B → A : {Nb}Kab
Msg 5 A → B : {dec(Nb)}Kab

Fig. 1: NSSK Protocol: Alice(A), Bob(B) and Server(S)

A, B and S are three principals Alice, Bob and Server
respectively. Na and Nb are two nonces generated by A and
B respectively. Kas and Kbs are two shared-keys used for
communication between Alice and Server, and Bob and
Server respectively. These two keys exist in advance to
establish the trust with Server before the actual run of
protocol. Key Kab is generated by Server to establish trust
between Alice and Bob. dec is a decrement function which
is used to performs decrement operation on nonce.

In message 1 Alice sends message to Server by saying ‘I
am Alice and want to communicate with Bob and here is
my nonce Na’. In message 2 Server sends a cipher
(encrypted) text containing Na, B and Kab along with an
other cipher text {Kab, A}Kbs which is encrypted by key Kbs.
Note that the whole message 2 is encrypted by key Kas
which can only be decrypted by Alice since he already
shares this key with Server. Moreover, when Alice
receives message 2 it checks back the nonce Na which
guarantees the freshness of message 2 means that it has

only been generated by Server. Alice can not decrypt the
cipher text {Kab, A}Kbs because it does not have key Kbs.
Here it is very important to understand that the network on
which Alice, Bob and Server are communicating is a
public network (internet) and everyone on network can
record every message and this is the reason that three
principals are using encryption and decryption to achieve
secrecy and authenticity of messages.

In message 3 Alice simply forwards cipher text {Kab, A}Kbs
to Bob which was embedded by Server in message 2. As
mentioned earlier Bob has already access to key Kbs
therefore it can decrypt and now has received the key Kab.
Figure 1 shows that there is no direct connection between
Server and Bob where Bob can only receive messages
through Alice. Server could also send Kab directly to Bob
in parallel to message 2 because all principals are running
separate instances of protocol concurrently. If it were so,
then it was possible for Bob to receive a cipher text from
Alice before receiving key Kab from Server, therefore
having no direct connection between Serve and Bob
confirms the correct sequence of messages.

In message 4 Bob sends its nonce to Alice encrypted by
Kab then Alice responds in message 5 by decrementing
Bob's nonce and encrypts it with key Kab. At this point
trust has been established between Alice and Bob through
shared-key Kab therefore they can securely communicate.

But this is not end of story; some one can make fool to
Alice pretending Bob which is described in next section.

4. ATTACK ON NSSK PROTOCOL – MAN IN THE

MIDDLE

The vulnerability of NSSK protocol was first observed by
D. Denning and G. Sacco [2] in 1981. It was observed that
an attacker can easily take advantage if at any point in the
protocol key Kab is compromised. Before going into
details of such attack we define few terms as follows.

4.1 Key compromisation by crypto-analysis

In cryptography the term Key compromisation means that
while there is encryption service is running between two
principals on the network one can succeed to guess about
secret key, in our example it is Kab, and hence key has
been compromised.

Cryptanalysis is not so easy to get key which is being used
in the current session of communication, rather it is a very
exhausting programming effort based on complex
mathematical operations to get it done successfully. A
successful cryptanalysis may take one week, one month or
one year to get the required key. As a matter of fact a
communication session between two principals is not too
long such that any attacker succeeds by doing
cryptanalysis. Therefore it is believed for an attacker to be
impossible to get required key during the current session
of communication between two principals; but what

S

B A

Journal of Independent Studies and Research (JISR)
Volume 3, Number 1, January 2005 4

happens if an attacker uses an old session key into new
session key which he was successful to get that key by
spending a long time using cryptanalysis? This was the
attack which was first observed in NSSK protocol which is
known to be key compromised attack.

4.2 Secrecy

It is a basic property of any security protocol defined as
the freshness or intactness of data being transferred
between principals on network. An information is secret if
no unauthorised person has read or manipulated it,
although it can be recorded or copied as many times as an
unauthorised person wants but it can not be read or
understood. Every security protocol must satisfy its
secrecy property.

4.3 Authenticity

It is also a basic property of security protocol which must
be satisfied. Alice must be able to know whether the
message transmitted by Bob has been successfully
received from the real (Authorised) Bob, after all on a
computer network (internet) no one can differentiate
between Monkey and Horse. Anyone in between can
pretend and record messages and therefore can forward or
re-play to any other principal. Although, forwarding or re-
play of messages does not mean to read, change or
understand it because messages are always in form of
cipher text. This kind of malicious activity is also called a
replay attack [4] which will help in describing the actual
attack on NSSK protocol.

4.4 Claimed attack on NSSK protocol

Following is the attacked NSSK protocol description:

i.1 A → S : A, B, Na
i.2 S → A : {Na, B, Kab, {Kab, A}Kbs}Kas
i.3 A → I (B) : {Kab, A}Kbs
ii.3 I (A) → B : {Kab, A}Kbs
ii.4 B → I (A) : {Nb}Kab
ii.5 I (A) → I (A) : {dec(Nb)}Kab

Messages i.1 to i.3 are a snapshot of protocol from an old
session. During the old session in message i.3 an intruder
(attacker) I pretend to be Bob and records every cipher
text sent by Alice. Now assume that in addition of
recording messages I, by means of cryptanalysis, have
also succeeded to get key Kab which belongs to an old
session some time ago. But I could not break the secrecy
of messages during the previous session because just after
that the old session was ended between Alice and Bob.

Messages ii.3 to ii.5 represent new session between Alice
and Bob. In message ii.3 I pretends to be Alice and replays
(re-sends) an old ticket {Kab, A}Kbs which was recorded by
I during the old session which also contains an old session
key Kab. At this stage Alice and Bob believe that they are
talking with authorised principals but actually they are

talking with a middle man (I) who is not an authorised
principal.

In message ii.3 I sends an old ticket to Bob, now since
Bob has key Kbs therefore it can decrypt the cipher text
{Kab, A}Kbs. Now Alice and Bob are sharing and old
session key with I. In message ii.4 I can decrypt {Nb}Kab
by using old session key Kab and similarly in message ii.5.

This attack was possible by re-playing the cipher text {Kab,
A}Kbs of an old session, but how to defeat this kind of
attack ? The answer to this question has been given in next
section.

5. FIXED VERSION OF NSSK PROTOCOL –
 DEFEATING THE ATTACKER

Following is the fixed version of NSSK protocol
description:

1. A → B : A
2. B → A : {A, Nb}Kbs
3. A → S : A, B, Na, {A, Nb}Kbs
4. S → A : {Na, B, Kab, {Kab, Nb, A}Kbs}Kas
5. A → B : {Kab, Nb, A}Kbs
6. B → A : {Nb}Kab
7. A → B : {dec(Nb)}Kab

In fixed version of NSSK protocol, before sharing of key
Kab Bob sends cipher text to Alice in message 2 containing
nonce Nb and name of Alice encrypted with key Kbs. As
explained previously, nonce Nb will serve as an identifier
to Bob during sharing of key Kab in next messages. In
message 3 Alice also sends the cipher text {A, Nb}Kbs to
Server. As a response in message 4 Server embeds the
cipher text {A, Nb}Kbs along with key Kab encrypted with
key Kbs and the whole message is encrypted by key Kas.

A clear difference can be observed in messages 3 and 4 of
NSSK flawed and fixed version protocols. In message 5
when Bob receives cipher text it can decrypt using key Kbs
and can check its own nonce Nb and receives the key Kab.
Since Bob had already sent nonce Nb to Alice in messages
2 therefore nonce Nb guarantees the freshness of key Kab
which belongs to the current session of communication
and since attacker I does not have access to nonce Nb
therefore it can not attack on this protocol. Finally in
messages 6 and 7 Alice and Bob have established the trust
using key Kab and therefore can encrypt and decrypt
messages without the fear of I.

If, by any means, I had been successful to get an old
session key Kab even then it would not have access to
nonce Nb. Since Bob always can check its nonce Nb before
sharing the key Kab therefore there is no chance of
confusion between old and new session key (Kab).
Moreover, since nonce Nb guarantees the freshness of
shared-key therefore we can say that it assigns the
freshness type to key Kab which can always be verified by
checking the nonce Nb which is always a fresh number.

Journal of Independent Studies and Research (JISR)
Volume 3, Number 1, January 2005 5

CONCLUSION

In order to understand a shared-key cryptographic protocol
we have defined few related terms in very basic
terminology. We have described both versions of original
Needham-Schroeder Shared-key protocol with flaw and
without flaw. We have compared both protocols in the
light of already known attack. We have examined the flaw
of NSSK protocol and found the possibility of man in the
middle attack when key Kab is compromised. Moreover, I
exploits the un- typed key Kab to use it from an old
session by getting it confused with new session between
Alice and Bob. We have also observed in fixed version that
by assigning a type to Kab by means of a nonce Nb attack
can be defeated.

REFERENCES

[1] C.A.R. Hoare Communicating Sequential Processes.

International Series in Computer Science, 1985. ISBN
0-13-153271-5 (0-13-153289-8 PBK) . Prentice Hall
1985.

[2] M. Abadi and A. D. Gordon. A calculus for

cryptographic protocols: The spi-calculus. In Fourth
ACM Conference on Computer and Communications
Security. ACM Press, 1997.

[3] R. Needham and M. Schroeder. Using encryption for

authentication in large networks of computers.
Communications of the ACM, 21(12), December
1978.

[4] D. Denning and G. Sacco Timestamps in key

distributed protocols. Communication of the ACM,
24(8):533–535, 1981.

[5] M. Abadi and A. D. Gordon. Reasoning about

cryptographic protocols in the spi calculus.
CONCUR’97: Concurrency Theory, volume 1243 of
Lecture Notes in Computer Science, pages 59-73.
Springe-Verlag, 1997.

