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Abstract: 
In speech processing applications the microphone acts as 
a transducer to convert sound to an electrical signal 
which is further converted to a sequence of discrete 
samples for digital processing. In this raw form the signal 
does not show readily discernable useful features, and 
therefore mathematical transformations have been 
developed to obtain further information that clearly 
demonstrates characteristics that can be attributed to 
various types of sounds comprising speech. This is 
fundamental to the front-end design of all speech 
recognizers. The importance of an effective and efficient 
transform for the speech signal is of prime importance 
since weaknesses at this foundation stage will undoubtedly 
impair the performance of the following stages. 
 
This paper discusses transforms for the speech signal with 
application to Automatic Speech Recognition. It reviews 
commonly used representations and modifications made to 
enhance their performance, and other transforms 
developed for speech processing and recognition. 
 
1. INTRODUCTION 

By nature, speech is an acoustic signal which is conveyed 
to the listener via the medium of air. Sound is conducted 
through air by variation in air pressure. The ear performs 
the role of the collector and transducer of sound, and a 
transformer for the higher levels of processing. In 
electronic systems the microphone performs the function 
of converting sound to a continuous electrical signal 
which undergoes to a further process of conversion to a 
sequence of discrete time samples for digital processing. 
In this time domain form the speech signal is not suitable 
for direct application of recognition algorithms. It has to 
be subjected to a transformation that will bring out 
attributes which will more clearly demonstrate attributes 
that behave in relation to the different sounds comprising 
speech. This is fundamental to the front-end design of all 
speech recognizers. The need for an effective and efficient 
transform for the speech signal is therefore of prime 
importance since any weakness in the transformation at 
this foundation stage will undoubtedly impact the overall 
performance even though the following stages have high 
performance. 
 
Speech recognizers offer high accuracy rates under 
controlled conditions but performance is drastically 
affected from noise under normal environment conditions 
in which they would be required to operate in practice. A 
transformation that would enable robust parameters to be 
derived for representing speech is an area of study that 

would contribute positively towards the goal of designing 
speech recognizers that function adequately well in real 
environments. 
 
The search for a suitable transform should fulfill the 
following requirements: 
 
i. Enable extraction of information from the acoustical 

speech signal. 
ii. Development and refinement of methods of 

measurement and observation. 
iii. Signal representation and transformation with 

properties that reveal information more clearly. 
iv. There may be a need for masking/suppressing 

information that may contribute to confusion. 
v. Extract a suitable set of features derived from the 

transformed signal that are uncorrelated and 
maximize reparability. 

vi. Robust to withstand corruption from external sources. 
 
This paper discusses transforms for the speech signal with 
application to Automatic Speech Recognition. It reviews 
current established representations, modifications to 
improvement them, and a new approach, the wavelet 
transform. Cochlea modeling as an alternative approach is 
also discussed. 
 
2. TRANSFORMS IN COMMON USE 

Several transformations and representations of speech 
have been employed in the front-end design of speech 
recognition systems. The choice and suitability of a 
particular type of representation has been dictated by the 
complexity of the requirements of the application and the 
state of technology at the particular time. The most 
common have been time domain and frequency domain 
methods. 

2.1 Time Domain Methods 

2.1.1 Energy, Zero-Crossings, Autocorrelation 

The discrete sampled speech signal is a time domain 
signal and provides elementary parameters and simple 
methods of processing, using characteristics such as 
amplitude, energy and zero-crossings. Using these features 
effective small vocabulary systems have been 
demonstrated. Autocorrelation methods have been 
successfully applied for determining speaker pitch 
frequency characteristics [1]. 

2.2 Linear Predictive Coding 

Linear Predictive Coding (LPC) is a technique [2] that 
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produced significant improvement in the design and 
performance of speech recognizers. The vocal tract is 
modeled as a linear time-varying system. Excitation (air 
from the lungs) sets it into resonance, the resonant modes 
being determined by the shape of the vocal tract at the 
time. When the excitation ceases, these resonances do not 
stop immediately but continue to ‘ring’ and gradually 
wind down, i.e. the future output of the vocal tract is 
depending on its previous history. A difference equation 
can be used to predict the future output. This is the basis 
for applying linear prediction to speech. Although this 
assumption only holds partially true for speech, it provides 
an effective method for deriving spectrum characteristics 
by optimizing the predictor filter parameters. The 
predictor parameters can also be used to re-synthesize 
speech. Owing to its simple processing in terms of speed 
of execution it gained preference over the Fast Fourier 
Transform approach. 

2.3 Frequency Domain Methods 

2.3.1 Fourier Transform 

The time domain samples are processed and transformed 
to the frequency domain which shows the characteristics 
of the speech signal from the view point of frequency 
components and the respective energy strength. The 
Discrete Fourier Transform (DFT) represents the sampled 
signal by a finite set of complex exponentials. This is 
computationally expensive to process. The Fast Fourier 
Transform (FFT) is an efficient implementation of the 
DFT that drastically reduces the time to compute the DFT. 
Speech is processed using the Short Time Fourier 
Transform (STFT) technique which provides time 
resolution as well as frequency resolution [1]. 

Filter banks in silicon [3] have also been used to derive 
the frequency spectrum in bands of 16 to 24 channels. The 
signal is filtered by a set of band-pass filters into a 
corresponding set of frequency sub-bands where ideally 
each sub-band would cover a different part of the 
spectrum and hence collectively would cover the entire 
frequency range of interest. Since real filters do not have 
ideal characteristics, the bands of frequency do have some 
overlap. The speech spectrogram is produced using this 
method. Digital filter banks have been one of the 
commonly used methods. 

2.3.2 Discrete Cosine Transform 

The Discrete Cosine Transform (DCT) [4] is a 
computationally efficient equivalent of the DFT. It enables 
an orthogonal transformation of the filterbank channel 
logarithmic levels producing DCT coefficients that tend to 
be uncorrelated. In addition, in the case of speech, most of 
the variance of the original channels is mapped to the 
lowest three or four DCT coefficients, and so the higher 
coefficients can be ignored, resulting in a reduction in the 
dimensionality from the original signal representation 

enabling it to be processed more efficiently. Thus a 24 
channel filterbank output can be represented by 12 
coefficients without loss of important information. There 
are four types of DCT. The forward DCT is used to 
convert the log magnitude spectrum to cepstral 
coefficients. 

2.3.3 Cepstral Analysis 

The speech waveform is considered as the convolution of 
the excitation and the vocal tract filter impulse response. 
In the frequency domain this is equivalent to the 
multiplication of the excitation and filter spectra, which is 
seen on the short time spectra as a slowly varying 
envelope which corresponds to the vocal tract filter 
characteristics, and if the speech is voiced, a rapidly 
varying fine structure which corresponds to the 
fundamental frequency of excitation and its harmonics 
(using a short data window its effects can be reduced). For 
speech recognition process, only the slowly varying 
envelope is required. The excitation spectra does not 
contribute to the recognition process and in fact is a source 
of confusion, thus the need for a method for separating the 
two i.e. de-convolution. The best results for doing this 
have been achieved with the cepstral analysis techniques. 

Taking the logarithm of the speech spectra is equivalent to 
the summation of the logarithm of the excitation spectra 
and the vocal tract spectra. The process of cepstral 
analysis is to take the log of the DFT of the speech signal 
and then perform the Inverse DFT (IDFT) on it producing 
the Complex Cepstrum. The Real Cepstrum is computed 
by the logarithm of the magnitude of the DFT followed by 
the IDFT. The cepstral coefficients so derived define the 
characteristics of the cepstrum. The pitch period is 
measured from the point of the first peak in the cepstrum. 
Deconvolution is achieved by filtering the cepstrum [5]. 
The low-time cepstrum holds the vocal tract filter impulse 
response sequence from which the smoothed spectrum can 
be obtained by performing a DFT on it. The formants can 
be extracted from this and tracked over time. 

3. MODIFICATIONS AND NEW TRANSFORMS 

The methods described are the established techniques that 
are being used in speech processing. In the effort to 
achieve further improvements at the front-end level, 
modifications have been made to these methods. Also new 
methods have been developed to address the inherent 
weakness in existing methods. 

3.1 Frequency Scale Warping 

The robustness of the human auditory process has 
provided the impetus to modify these methods by 
incorporating features from human auditory perception. 
As the human auditory sensation has a logarithmic 
response to tone height, the approach has been to 
transform the linear frequency domain to a logarithmic 
one. The lower frequencies are given a finer resolution as 
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compared to the higher frequencies.  Examples of this 
nonlinear frequency warping are the Bark and Mel scales. 
Significant improvements in performance have been 
reported following this modification. The Mel Frequency 
Cepstrum Coefficients (MFCC) are in predominant use in 
present ASR front-end designs [6]. 

3.2 Dynamic Characteristics of Speech 

Another characteristic that all methods have in common is 
the basis of “short time” analysis. The speech signal is 
analyzed in frames of 10ms to 20 ms on the assumption 
that owing to the inertia of the human articulatory system, 
the properties of speech change relatively slowly with 
time, and the properties of the sound are taken to be fixed 
over this time frame. This results in the loss of the fine 
dynamic characteristics of speech which are important in 
discerning the sound and hence have been ignored. Use of 
overlapping frames was also not very effective. Thus it 
was perceived that significant gains could be realized by 
making use of this information in the speech model. 

Adding transitional information such as “velocity” and 
“acceleration” type parameters has produced further 
improvements [7]. “Velocity”-type parameters are 
extracted by taking the difference between successive 
frames. “Acceleration”-type parameters are the difference 
in the “velocity”-type parameter between successive 
frames. Use of MFCC (“velocity”) and MFCC 
(“acceleration”) have reduced error rates by 50%. 

3.3 Continuous Wavelet Transform 

Though the STFT provides time and frequency resolution, 
its use of a fixed window size limits its resolution 
capabilities. For the FT to be valid, the signal being 
processed must be stationary. Speech is a non-stationary 
signal, but since it is a slowly changing signal, portions of 
the signal can be assumed to be stationary. Ideally, the 
width of the window should be equal to the duration the 
portion of the signal under consideration is stationary for. 
Therefore, if a signal is stationary for a short duration of 
time, it will require a short window size to resolve it in 
frequency and time, and likewise a stationary signal of 
longer duration would require a longer width window. 
Clearly, different portions of speech will exhibit 
stationarity for differing durations, and hence a fixed 
window size as is used in the STFT is obviously a 
handicap and will limit its ability to provide good 
resolution over both frequency and time (the effects of this 
can be seen on narrow-band and wide-band 
spectrograms). So it is required for the window size to be 
adaptive depending on the duration of the stationary 
portions of speech. 

The Continuous Wavelet Transform (CWT) [8] is a new 
technique developed to address this issue through the 
implementation of multi-resolution analysis (MRA).  

Whereas the FT is the integral over all time of the signal 

multiplied by a complex exponential function, the CWT is 
the integral over all time of the signal multiplied by 
scaled, shifted versions of a wavelet function, called the 
mother wavelet producing a time-scale view of the signal. 
Scaling produces compressed or stretched versions of the 
mother wavelet. Shifting the wavelet is simply the wavelet 
delayed in time. Thus the CWT process produces wavelet 
coefficients that are a function of scale and position.  

The idea is to analyze different frequencies with different 
resolutions. In the case of speech, the signal mostly has 
low frequency components and higher frequency 
components are less frequent. As seen with STFT, short 
windows provide good time resolution but poor frequency 
resolution, while long windows give good frequency 
resolution but poor time resolution. Therefore the tradeoff 
is to have good frequency resolution (but poor time 
resolution) at the lower frequencies (since these frequency 
components are present most of the time in the speech 
signal) and good time resolution but poorer frequency 
resolution for the higher frequencies. 

The process to compute the wavelet coefficients is 
iterative. It is essentially a correlation of the wavelet 
shifted over the signal. The transformed coefficient value 
is computed at each shifted position along the signal. A 
high value indicates presence and strength in the signal of 
the frequency component represented by the wavelet, and 
conversely, a low value indicates a lesser influence (or 
even absence if the value is zero. For the next iteration, 
the wavelet is scaled (ie. representing another frequency) 
and the coefficients computed from the correlation of the 
signal with this new wavelet, using a repeat of the process 
with the previous wavelet. Processing the signal with all 
the scaled wavelets completes the picture. A three 
dimensional graphical display of coefficients vs. scale and 
time resembles a terrain map. The scalogram is the square 
magnitude of the CWT and shows the energy distribution 
of the signal in time-scale plane. 

For digital processing, the CWT is discretised by sampling 
the time-frequency (i.e. scale) plane. The scale axis 
discretisation is done using a logarithmic scale. The time 
axis is discretised based on the discretisation of the scale 
axis. Advantage is taken of the scale change to reduce the 
sampling rate since as the scale increases; this corresponds 
to a decrease in frequency hence the sampling rate can 
also be decreased in accordance with the Nyquist rate, 
which also implies a reduction in computation. 

3.4 Discrete Wavelet Transform 

The discretised CWT still requires much computation time 
as it contains redundant information. The Discrete 
Wavelet Transform (DWT) offers a considerable 
reduction in computation time and easier implementation 
than CWT. It uses subband coding by processing the 
signal through a series of high-pass filter and low-pass 
filters. The high-pass filters analyze the high frequencies, 



 

Journal of Independent Studies and Research (JISR) 
Volume 3, Number 1, January 2005  9 

and the low-pass filters analyze the low frequencies. The 
scale change is performed by upsampling (creating new 
samples by interpolation between two samples) and 
downsampling (skipping samples) the signal. Frequency 
bands that have a significant content in the signal will give 
high values for the corresponding part in the DWT. 

The analysis windows can be chosen to simulate the 
frequency response of the human cochlea. 

4. COCHLEAR MODELS 

All the methods described above look at the signal from a 
digital signal processing viewpoint which is to treat 
speech as just another signal and to apply DSP techniques 
in processing it. These are based on the model of “speech 
production” i.e. speech as a convolution of the excitation 
and vocal tract filter. Another approach has been to model 
on the human auditory process from knowledge gained 
from studies of how the cochlea transforms the speech 
signal. The ear does not perform a FT or any of the DSP 
techniques discussed. The auditory nerve fibers are 
continuously firing (even in the absence of sound) and the 
incidence of sound affects the rate of firing of these 
nerves. It seems that phonetic features in speech have a 
correspondence to the neural discharge pattern, and also 
shown to be suitable for identifying aspects of speech 
signal relevant to speech processing and recognition.  
Auditory models [9] developed along these lines have 
reported significant results. It is also hoped that these 
models will also aid in understanding the perceptual 
properties from the view point of the internal 
representations of the human auditory system. These 
auditory based models have also claimed better robustness 
in noise as compared with the “production” based models.  

At present, majority of research in speech processing 
methods are based on the DSP approach, but Auditory 
Modeling as an alternative approach is gaining attention as 
the results have shown promise. 

5. CONCLUSION 

Transforms are basic to the design of the front-end of 
speech recognition systems, as weaknesses in the 
transformation method will surely impair the overall 
results. Using the established methods, speech recognizers 
have been able to achieve high recognition rates for large 
vocabularies by a single speaker. The established methods 
such as FT, LPC and cepstral analysis are based on the 
speech production model. Improvements in these models 
have been obtained by modifications taking account 
dynamic characteristics of speech and by incorporating 
perception characteristics of the human auditory system. 
To address the limitations resulting from uniform 
frequency resolution of the STFT, wavelet transforms 
have been applied to speech processing with improved 
results. 

Cochlear Models attempt to reproduce the human auditory 
system. This is a distinctly different approach which is 
speech perception-based as opposed to speech production-
based, the obvious motivation for this being the 
performance of the human auditory system. 

The critical issue in implementation of speech recognition 
systems is noise. Besides the techniques discussed, there 
are several mathematical transforms in existence. These 
transforms could be studied from the view point of 
robustness to external disturbance factors, i.e. inherent 
properties of these transforms that make them resistant to 
noise. 

Another issue is speaker independence for which 
transforms could be studied to resolve also. 

 
REFERENCES 
 
[1] L.R. Rabiner and R.W. Schafer, “Digital Processing 

of Speech Signals”. Prentice-Hall, Inc., Englewood 
Cliffs, New Jersey (1978). 

 
[2] J. Makhoul, “Linear Prediction: Atutorial Review,” 

Proc. IEEE, Vol. 63, pp. 561-580, 1975. 
 
[3]  Andrew R.B., Gabriel M.R., “Micromachined 

Micropackaged Filter Banks”, IEEE Microwave and 
Guided wave Letters, Vol. 8, No. 4, April 1998. 

 
[4] V. Sanchez, P. Garcia, A.M. Peinado, J.C. Segura, 

A.J. Rubio, “Diagonalizing properties of the discrete 
cosine transforms" IEEE Trans. Signal Processing, 
Vol. 43, pp2631-2641, November 1995. 

 
[5] A.V. Oppenheim, R.W. Schafer, “Homomorphic 

Analysis of Speech”, IEEE Trans. On Audio and 
Electroacoustics, Vol. AU-16, No.2, pp. 221-226, 
June 1968.  

 
[6] L. Jia, B. Xu, “Including Detailed Information 

Feature in MFCC For Large Vocabulary Contious 
Speech Recornition”, ICASSP 2002, Vol. 1, pp 805-
808. 

 
[7] S. Furui, “Speaker Independent Isolated Word 

Recognition using Dynamic Features of the Speech 
Spectrum”, IEEE Trans. on ASSP, Vol. 34 (1) 1986, 
pp 52-59. 

 
[8] O.Rioul and M.Vetterli, “Wavelets and signal 

processing”, IEEE Signal Processing Magazine, 
Vol.8, No. 4, Oct. 1991, pp.14-38. 

 
[9]  R.F. Lyon, “Computational Models of Neural 

Auditory Processing”, Proc. ICASSP (1984) 36.1.1-
36.1.4. 

 


