
 Journal of Independent Studies and Research (JISR)
 Volume 5, Number1, January 2007

2

On Self Managing Autonomous Ubiquitous Networks

Junaid Ahsenali Chaudhry , Sajjad Hussain Chaudhry , and Park Seungkyu
Department of Information and Communication,

Ajou University, South Korea.

Abstract: The interfaces of computing systems are
expanding. This expansion has revealed many new
problems that were never considered for conventional
software systems. Ubiquitous networks belong to the
generation of computing systems that deals with high
levels of mobility and ‘interface everywhere’ theme. So
they require more resilience. Conventional methods for
managing these networks are inappropriate and very
costly. Autonomic self management is a promising new
concept that aims to (i) increase reliability by designing
systems to be self-protecting and self-healing; and (ii)
increase autonomy and performance by enabling systems
to adapt to changing circumstances, using self-configuring
and self-optimizing mechanisms. In this paper we propose
that the cost attached with network management can be
cut short with increased quality of service and
performance. We give the architecture of an Autonomic
Management System (AMS) in a smart home scenario,
which we plan to implement in our project.

Keywords: Algorithms, artificial intelligence, information
systems

1. INTRODUCTION

To date, the natural growth path for systems has been in
supporting technologies such as data storage density,
processing capability, and per-user network bandwidth,
with growth increasing annually for 20 years by roughly a
factor of 2 (disk capacity), 1.6 (Moore’s Law), and 1.3
(personal networking; modem to DSL [Digital Subscriber
Line]), respectively. The usefulness of Internet and
intranet networks has fueled the growth of computing
applications and in turn the complexity of their
administration [1]. The cost attached to manage the
complex system of today is a lot more then the actual cost
of the system [3]. In such a complex environment, the
importance of system reliability and dependability gains
more importance. Dependability is defined as the property
of a computer-based system that enables reliance to be
placed on the service it delivers. The customized service
delivered is the result of its behavior as perceived by other
systems or its human users [4]. Dependability covers many
relevant system properties such as reliability, availability,
safety, security, survivability and maintainability [5] [6]
[14]. IBM being the leader in taking the initiative in
Autonomic Computing [7] has worked for making their
products more dependable [2]. Tivoli [8], Lotus [9], IBM

WebSphere [10] and IBM DB2 [11] being the prime
examples in software. In hardware IBM eServer [12] is
among prime examples. Regarding the use of Autonomic
computing in ubiquitous systems, it all started off when
the systems became very complex mainly because of
many types of devices, the ubiquitous systems cater [1].
The over all flux on a ubiquitous becomes so much that it
requires a management system separately. The slogan of
seamlessness and ‘desktop everywhere’ increased the
importance of some entity that manage and look after the
performance of ubiquitous systems. The main purpose of
ubiquitous management server is to provide the system
much needed device independence. But in ubiquitous
systems it has to go through many management functions
like self healing, fault diagnosis, fault handling, security,
performance management, context awareness and
prediction algorithms [13]. These requirements were the
reasons for autonomic computing to become a self
management tool for huge management systems. Various
features of autonomic systems are presented in [15, 16, 17,
18, and 19]. In this paper we present the architecture of an
autonomic management system designed for residential
gateways. We discuss various service modules included in
the autonomic management engine and their working for
service management and better quality of service.

2. BACKGROUND

Making Human Nervous System a bench mark, the term
autonomic systems was started by IBM in 2001. Since
then they have invested billions of dollars to get the real
picture. Now the pioneer of Autonomic Computing
defines it in [2]. Autonomic computing is making its space
in ubiquitous systems because if silent work. It resides in
the system and keep tracks of all the dynamics of it.
Whenever and wherever needed, it takes preemptive
measures accordingly. SELFCON is the architecture for
self configuration in ubiquitous networks [15]. SELFCON
associates the configuration intelligence with the
components of network rather then limit it to a centralized
management station. AUTONOMIA is an autonomic
computing environment [16]. They propose Autonomic
Middleware Service (AMS) the service that takes care of
dynamic needs of autonomic applications. The idea of
Personal Home Servers is presented in [17]. They believe
that personalization is the key to reduce the complexity.
To each user, they have provided a server that deals with
the service customization and each user communicates

 Journal of Independent Studies and Research (JISR)
 Volume 5, Number1, January 2007

3

with others via his personal server. The mobility of the
user and the service portability is also managed by the
same. Embedded micro servers are provided to every
physical device in [18] called Pervasive Servers. With
emphasis is on user customizability and policy
enforcement. They say that the personal server carried by
each person coordinates with pervasive servers. This
framework is very dynamic and may be a good candidate
for dynamic service composition. They have used
Universal Plug and Play (UPnP) for service discovery,
traditional web server for location management, XML
messaging protocol for message passing among the
individual modules. The context management is difficult
in this environment but they define it as their future goal.
In the future ubiquitous P2P communication environment,
they emphasize on autonomic service composition. They
believe that in place of defining one service for many
users then user investing time and effort, or the
middleware via behavior learning algorithms, to customize
it according to his likings the services consider the user
context and dynamically gets published in the network.
They define every object as service element and individual
service as a service element also. The user Service
Composition Core (SCC) technology to enable service
elements and make groups, State Acquisition (SA)
technology for acquiring the state of service elements and
Network Reflective (NR) technology for monitoring the
state of the network and keeping track of all the activities
going on in the network. In [20] the authors discuss about
the architecture of service gateway for smart home.
Building on OSGi Platform, they propose that the
residential gateways are connected with a management
gateway that does the management functions for the
residential gateways. And in [21] the authors enumerate
challenges in building service-oriented application for
OSGi. Since last many years scientists of the whole world
are looking for some technology that can assist humans,
shoulder to shoulder.

3. AUTONOMIC SELF MANAGEMENT

Software-based systems today increasingly operate in
changing environments with variable user needs, resulting
in a continued rise of administrative overhead for
managing these systems. Thus, systems are increasingly
expected to dynamically self-adapt to accommodate
resource variability, changing user needs, and system
faults. A common approach to adding self-management
capabilities to a system is to provide one or more external
control modules, whose responsibility is to monitor system
behavior, and adapt the system at run time to achieve
various goals. Autonomic Self Management is itself a
bunch of management function that the system developer
aims to add in the system [13]. For many application
domains, managing a system requires managing multiple
dimensions. For example, consider a video conferencing

system with different user applications in a heterogeneous
network environment, where the aim is to provide the best
service at the lowest cost. At once, several potential
dimensions of control exist, including composition,
change, performance, and cost of service, each
corresponding to different domain expertise, and thus,
modules of control. Many self-management modules (SMs)
are available today, each typically capable of addressing a
distinct aspect of self-management. The challenge is to
allow developers to coordinate multiple distinct
management modules together in a coherent and consistent
fashion to manage a system. When those functions
perform the allocated tasks only then we say that the
management is enforced hence the self management is a
collective function of many sub functions. We discuss
those sub functions one by one and how we embed the
autonomic functions for bringing self management into
action. At the moment we are considering the F(ault),
C(onfiguration),A(ccounting),P(erformance),S(ecurity)
functions in autonomic self management paradigm.

3.1 Self Fault Management

Network operations are complex and network
operators are frequently flooded by a number of event
messages when a few network failures occur. These event
messages can’t be monitored by the operator especially
when it comes to ubiquitous networks with large volumes
and countless geographic scope. The successful
management of a network is the reduction of the alarm
volume while improving the information content [31]. The
fault identification involves the following steps.

1- Event registry: There is some monitoring ‘all
time up’ service. At some specific points the
registry logs manage the event logs.

2- Event Correlation: Some event correlation
models are provided to the system. Those models
help the system identify the exact nature of the
fault and then the faults are directed to related sub
system.

3- Fault Contextualization: After identification of a
fault alert, the next task is the determination of
the nature of the fault. Pattern matching is done
to identify the nature of the fault.

Fault can be of two types. 1) Avoidable faults 2)
Unavoidable faults [22]. We in our project have
categorized the faults into the same two categories. The
purpose is to keep the humans away from control loop.
Case Based Reasoning is a technique for solving problems
based on experience. The technique’s intuitive approach is
finding increasing use in complex system diagnostics.
Each module has some exceptions mentioned and the
exception pool is maintained and updated by the user
checkup or system update. The cases are defined against

 Journal of Independent Studies and Research (JISR)
 Volume 5, Number1, January 2007

4

exceptions and the policies are managed to handle the new
fault exceptions. In [30] it is said that the CBS is efficient
because

a- Reduction in diagnostic time
b- Capture and reuse of a technician’s experience
c- Increased acceptance of diagnostic equipment
d- Feedback of field experience into the design process

 In case of second type of faults we try to keep the user as
away from evaluation as possible and have put him in the
last loop. At first when the unidentifiable faults come, the
system asks the autonomic recovery engine to generate
some service that recovers the system from the chaotic
state.

3.2. Self Configuration Management

The main purpose of self-management technologies is the
reduction of the cost of network deployment and
operations. Providing self-management technologies
should increase the number of network elements managed
per person or the time needed to operate a network.
Additionally, they increase the usability and enable
inexperienced users to run network with little networking
skills and knowledge. In ubiquitous systems where
computers are embedded into the environment and the
user is supposed to have no idea about them, self
configuration becomes more important. In general, self
management technologies increase the autonomy of
individual network elements or of small, tightly connected
groups of network elements. Network elements take over
the significant amount of management functions, reducing
the required interaction with the centralized manager to a
minimum. Self-Configuration is a part of self-managing
systems. It follows the paradigm of Plug-and play for the
systems. It mainly covers the initial setup and some
maintenance during the life-time of a system. Additionally,
it covers the ability to compose system from parts. So
when they get plugged together, they should just work as
they are supposed to work. The self-configuration itself
increases the number of additional removals of systems
per working hour. And it is the only way to let
inexperienced users to setup a network at all.
In heterogeneous networks, autonomic configuration is
very important. It gains more importance in a ubiquitous
smart space scenario where seamlessness is a very
important measure of Quality of Service (QoS). Not only
the Quality of service is a big issue but the device
discovery and service discovery are the issues that come
into consideration very strongly. The device interface
identification is the responsibility of device discovery
module residing at service gateway level. Once the context
is transferred to the management gateway, it is looked up
in the context database by lookup manager. The context is
converted into query by lookup manager and the context

database is queried. If the software support is present, its
handler is passed to residential gateway and it installs that
piece of software else the service provider is paged and
software support is requested. If even after consulting the
service provider, the support is unavailable, a default
profile is attached and a generic driver is attached to that
device until that device leaves the Area of Influence (AoI).
Another scenario we have considered is the identification
of a Ubiquitous ID. If that device was attached with some
ubiquitous online gateway, the context of that device is
requested and downloaded from that gateway. The
following is the resource model for interface identification

• The device is detected by Home Gateway.
• Home Gateway makes a Context File
• That Context File is transferred to the Active

Directory
• When some entry is found in Active Directory,

the u-Configuration module detects it and marks
it for processing.

• Intra system support detection i.e. Database
lookup

• Inter System support detection i.e. Service
provider

• If support found, it is returned to Home Gateway
else some default provide is assigned to that
device.

Fig: Resource Model of Interface Identification

Context File: An XML file containing context information
of the device
Active Directory: A Directory monitored constantly.

3.3. Self Accounting

Being accountable means being able to provide an
explanation for ‘why things are this way’ that is adequate
for the purposes at hand. Accountability becomes even
more relevant for systems whose role calls for users to
make sense of their behavior precisely and accurately [23].
In autonomic systems the user is pulled out of the
execution loop completely so there are very less chances
for the system to ‘explain’ use about the tasks he is
performing. The user can either look at the policies or the

 Journal of Independent Studies and Research (JISR)
 Volume 5, Number1, January 2007

5

event logs that the system has been generating. But it is
cumbersome to do. Most often this feature of the
autonomic systems is considered as similar to the expert
systems. The following figure shows the architecture of
expert systems.

Fig: Self Accounting Systems example from Expert

Systems [24]
In the architecture of the expert system, the explanation
system is the facility provided to the user so that he can
have a look at the logic that expert system has used to
infer the results. It can be in the form of log files of
inference engine or some rule it has used from rule base to
infer to the results. Putting user out of execution unit can
rise some serious issues like system transparency is
breached and the user is not trained according to the
system. Plus there is no hands-on experience for the user
so he remains unaware of the system and hence can not be
able to develop the trust on the system. This is a big issue
on the part of autonomic systems that they are not
accountable to the users.

3.4. Self Optimization

One of the major challenges in the runtime management of
computing environments in any enterprise is both the
initial optimization of these environments, and keeping
these environments optimized when changes occur. In [28]
the authors have shown as much as 21.72% improvement
in execution time targeting optimization in performance of
processors in multi processor systems. We have divided
the areas optimization it the following matrix.

• Remote User Optimization
• Service Operation Optimization
• Platform Optimization
• Mobile Device Optimization
• Gateway Optimization
• Database optimization
• Network Optimization

Since optimization of all the network is a super set of
optimized components so its hard to cover all of the area
mentioned above but in the following passage we discuss
them some of them.

3.4.1. Remote User Optimization

The remote user is connected to the system via
management server through internet. There are some
policies for each connected user. A fault model
enforcement technique [27] is used to bring classification
among the users and for policy implementation. A good
candidate for user session management is proposed in [26].
When the user session starts the policy enforcement entity,
and some monitoring entity constitutes to form a user
session management layer and that layer is useful for
maintaining the session record for future predictions,
profile updating and providing better quality of service to
remote user.
We in our system have used Session State Management
(SSM) technology to deal with the remote user
optimization. Following this approach is feasible because
of lot of diversity in heterogeneous devices and the
complex operations attached to them like user mobility
management, prediction algorithms and recourse
allocation to each session. In the scenario given, the user
requests for connation establishment with the remote
server. The server invokes monitoring, policy enforcement,
resource allocator and scope allocator service to that
session and at the end when user requests for closing the
session, the profiles are updated and logs are dealt
accordingly.

3.4.2. Service and Service Elements Optimization

Arguably the performance of every system depends upon
the performance of services in a Service Oriented Network.
The dynamic environments like the one presented in [28].
The authors propose three technologies in Ubiquitous
Service Oriented Networks 1- Service Composition Core
Technology 2- State Acquisition Technology and 3-
Network Reflective Technology. The performance of a
service depends upon the performance of these three
technologies. The architecture we propose carries OSGi as
its platform. We have certain performance templates or
profiles. The monitoring service is monitoring the
activities and whenever there is some unusual change
identified, the profile manager having system rights will
change the profile of the system. We haven’t selected
more complex approaches because implementing those
will bring lots of problems for other self management
modules. Since in every profile, the parameters for all
services is defined. So there will be no clash in the
performance of the system.

3.4.3. Database Optimization

Besides all the database level optimization schemes for
storage or check of data for cardinality and duplication, we
think that in most cases the database level delay is due to

 Journal of Independent Studies and Research (JISR)
 Volume 5, Number1, January 2007

6

inaccurate querying. The parts of AMS system dealing
with database contain intelligent query generators. We are
working on implementation of the query generators and
they are expected to improve the performance of our
system.

3.5. Self Security Management

Security is the weakest link in the ubiquitous systems. The
systems that present interface everywhere and are all time
any where present are more vulnerable and prone to some
external attack. Besides internal malfunctioning or some
QoS problems, the external attacks, intrusion detection,
and then cure is a very important issue in ubiquitous
systems. Arguably the most exposed systems to the
external attacks, ubiquitous systems, need such a security
mechanism that is always awake and present everywhere
alongside the interface.
Here in our system we propose a Natural Immune System
(NIS). The human immune system consists of a large
number of specialized cells, which operate autonomously
and interact with each other to create complex chains of
events leading to the destruction of pathogens. Broad
categories of cells can however be defined and form two
groups: detectors and effectors. The role of detectors is to
identify pathogens and the role of effectors is to neutralize
pathogens. We follow the same approach.
The NIS launches many detection agents in the network
for checking the security level of each part. These agents
have some goal set to check the functioning of the related
modules and then report back the health report. The other
type of agents is effectors. They are reaction agents of the
system. Whenever the health report is diagnosed as worth
treatment, the agent engine launches the effectors as the
cure for that problem and they move autonomously and fix
the problems.
One particular aspect of multi-agent systems that we have
focused on is their ability to form dynamic social groups.
The interest in this behavior stems from the concept that
by linking together the sensory and intelligence
capabilities of a large number of agents distributed across
a network, we can amplify the ability of the network to
resist attacks or intrusion. Specifically, through social co-
operation agents can benefit from the combined defensive
capabilities of their particular group. Keeping all the
scenarios in mind, it’s a tough job to device a security
system for ubiquitous systems. But we have decided to
research more in this direction too.

4. CONTEXT AWARENESS
Context awareness is one of the most debated issues
around among ubiquitous systems researchers. What and
when to gather context are the issues. Since we are
benefited by ever increasing performance speed and
memory space, we can gather the context of everything
happening around but to get the sense of that heap and

then collecting the information that can be best suitable in
a problem is the biggest issue of all times. Had that
problem solved, computers would have been betters
computers by now.
We have followed the Gather and Pluck approach (GnP).
In this we gather all the events and the logs are forwarded
to the Context Control Center (CCC). The CCC gets the
logs and identifies the contexts and forwards them into
their respective profiles. These profiles are then observed
by data mining agents. The data mining agents are
included in our future work. After the data mining agents
finish their tasks the profiles become light weight and easy
to transport over network. This is called Profile
Transformation. The profile transportation gives the
facility to the systems to share, donate and update profiles
easily.

5. THE UBIQUITOUS AUTONOMIC
MANAGEMENT SYSTEM

5.1 Description

The Ubiquitous Autonomic Self Management System is an
autonomic self management module in our project. We
have a scenario of a ubiquitous Smart Home on hands.
Every house is connected with a Residential Gateway
(RG). That gateway is responsible for providing services
to users (devices, human user). The Service Oriented
Architecture of the gateway serves as an execution point
for the services to interact with the user. Each Residential
Gateway is connected with a management gateway. The
task of management gateway is to manage the gateways
and services running on them.

Fig: A Connected Smart Home
Since the scope of our project is lot broader then one
management gateway we can face the following problems
if we manually manage the over all system.

Ubiquitous Computing has eliminated almost all

manual tasks so manual management will not be suitable
for such systems. Or in other words, human intervention
will not serve the purpose of seamlessness. The system is

 Journal of Independent Studies and Research (JISR)
 Volume 5, Number1, January 2007

7

so complex that we need to have some system generated
self monitoring and managing service. The administrating
cost goes so high if we count the over all system that it’s
not possible to run this business system.
So we decided to use an autonomic self management
module in our project. The following figure shows the
over all system overview. There are many remote
managers, serving various gateways. Every house has its
own gateway so a house is represented by a gateway.
Connected remote managers will broad the scope when
every single house is accessible from various remote
locations.

Fig: Remote Manager Scenario

5.2Architecture

In the following context we discuss the architecture of u-
AMS. There are some core services that directly interact
with the user. These are platform independent services that
are either provided by service provider or generated by the
system itself. These services are initiated when they are
loaded from the service pool at the initialization of
management gateway. Later on the service pool is updated
as the new services are added or old services are updated.
In u-AMS the services are called service bundles and
service pool as u-function bundles pool. In that service
pool all services individually and service pool collectively
is monitored by the monitoring service. It is the logging
system utility that gives the facility to monitor every
instance taking place within the system. That monitoring
services leads to Context Control Center (CCC). This part
of system manages the profiles and reports to the context
analyzer. It works out on the log files generated as a result
of all the monitoring activities and hence it updates the
profiles of all the entities. This part of u-AMS is even
driven it goes through all the activities and if some activity
other then normal pattern is found, it reports to context

analyzer. The Context Control Center is a kind of
exchange that diverts the related to the relevant profile or
things out of context (exceptions) to context analyzer. The
profile, if left unexamined, will become too bulky. So to
reduce the size and for more efficient processing some
data mining functions are performed on profiles. These
data mining functions are performed through data mining
agents. There is some normal profile of each entity and
that is defined when it first gets attached to the system or
the system software defines it default operation. When
there is something happening other then the default
operation that is separated and recorded. That makes the
information size low (data mining agents are included in
our future implementation plans).

Fig2: System Architecture of u-ASM system
 When some exception or malfunctioning is reported, the
context handler is passed to context Analyzer module. The
function of this part is mainly the pattern matching. Using
Pattern matching, it identifies the problem and handles the
context to the Action Manager.
Action manager is mainly the policy checker. It checks the
policies and takes the appropriate action as directed in
policy. The type of violation is important here. If the
breach is of the sever type, or it is of a type that system
can handle with the help of policies. This part of the
system predicts the level of reaction to the breach or
malfunctioning.
After the analysis of the problem and its identification, the
context is handed over to the related management module.
A reaction policy is devised by that management module
and Agent Based Feedback Model is actuated and that
policies are implemented on the services. We have chosen
Agent based technology over here by considering the
scenario in mind that the services may reside at remote
place so agents can be a good candidate for execution of
remote action.

6. IMPLEMENTATION

We plan to implement our work using toolkit provided by
IBM for autonomic systems. We first make resource
model and then those resource models are implemented
using that toolkit. Behind any autonomic computing

 Journal of Independent Studies and Research (JISR)
 Volume 5, Number1, January 2007

8

system is some form of autonomic management engine.
This engine acts as the hub of the wheel, keeping all of the
spokes together and pointed in their proper directions. An
autonomic management engine such as IBM's Autonomic
Management Engine (AME) coordinates the control loop
for an autonomic computing system. In a control loop, a
system continually monitors the environment, analyzes the
information received, plans a response, and executes that
response. If you had to manage a new autonomic
application for every issue you had, you wouldn't be
saving much in terms of labor. You'd also start to run into
problems in terms of standardization between systems,
increased software complexity, and so on. Instead,
autonomic computing technology works on the idea of a
single management engine running multiple resource
models. A resource model is a set of criteria and
instructions that get plugged in to AME. The resource
model defines what resource to monitor (that is, disk space,
processor time, and so on), what events and conditions to
look for, and what to do in the event that those conditions
do in fact occur [32].

7. FUTURE WORK
In this paper we propose the architecture of autonomic self
management module that we plan to implement in our
project. For a big, all time up system it is very important to
have some management facility and since the complexity
of the system is so much that the management cost of
adopting human monitored management is very high. So
we propose an architecture that gives the liberty to the
system to make her own decisions and when it feels
convenient page the user about her problems. We plan to
implement this architecture in our project. The tasks that
we aim to do in future are the data mining agent
development for better context awareness, fault policy
model development, Inference engine for reasoning
explanation and security plan for our ubiquitous business
management system.

8. ACKNOWLEDGE

This research is supported by the ubiquitous Autonomic
Computing and Network Project, Ministry of Information
and Communication (MIC) 21st Century Frontier R&D
Program in Korea." The authors acknowledge all the
colleagues in Center of Ubiquitous System, Ajou
University South-Korea.

REFERENCES

[1] R.Want, T. Pering, D. Tennenhouse, Comparing
Autonomic and Proactive Computing, IBM systems
Journal, Vol 42, No1, 2003.

[2] www.research.ibm.com/autonomic

[3] F. P. Brooks, Jr., The Mythical Man-Month: Essays on

Software Engineering, Twentieth Anniversary Edition,
Addison-Wesley Publishing Co., Reading, MA(1995), p.
226. See also, F. P. Brooks, Jr., “No Silver Bullet:
Essence and Accidents of Software Engineering,”
Computer 20, No. 4, 10–19 (1987).

[4] B. Randell, “Turing Memorial lecture- Facing up to

Faults” , Comp.J. 43(2), pp 95-06, 200.

[5] A. Avizienis, J.-C. Laprie, B. Randell, “Fundamental

Concepts of Dependability”, UCLA CSD Report
#010028, 2000.

[6] R Sterritt, DWBustard, "Autonomic Computing-a

Means of Achieving Dependability?", Proceedings of
IEEE International Conference on the Engineering of
Computer Based Systems (ECBS'03), Huntsville,
Alabama, USA, April 7-11 2003, pp 247-251.

[7] Paulson, L.D., IBM begins autonomic-computing

project Computer , Volume:35 , Issue: 2 , Feb. 2002
Pages:25 - 25

[8] http://www-306.ibm.com/autonomic/tivoli.shtml

[9] http://www-306.ibm.com/autonomic/lotus.shtml

[10] http://www-306.ibm.com/autonomic/websphere.shtml

[11] http://www-306.ibm.com/autonomic/db2.shtml

[12] http://www-1.ibm.com/servers/uk/eserver/zseries/
 feature040704/

[13] A.G. Ganek, T.A. Corbi, “The Downing of the

Autonomic Computing Era”, IBM systems Journal Vol
42 No1, 2003.

[14] H. Morikawa, M. Jeong, and T. Aoyama: "Bringing

Flexibility into Ubiquitous Personal Networks", In
Proceedings of First International Workshop on Active
Network Technologies and Applications, pp. 75-79,
Tokyo, Japan, March 2002.

[15] R. Boutaba, S. Omari and A. Virk. SELFCON: An

Architecture for Self-Configuration of Networks.
International Journal of Communications and Networks
(special issue on Management of New Networking
Infrastructure and Services), Vol.3. No.4, pp.317-323,
2001.

 Journal of Independent Studies and Research (JISR)
 Volume 5, Number1, January 2007

9

[16] Autonomia: an autonomic computing environment
Xiangdong Dong; Hariri, S.; Lizhi Xue; Huoping Chen;
Ming Zhang; Pavuluri, S.; Rao, S.;Performance,
Computing, and Communications Conference, 2003.
Conference Proceedings of the 2003 IEEE
International , 9-11 April 2003

[17] Tatsuo Nakajima, Ichiro Satoh: Personal Home

Server: Enabling Personalized and Seamless Ubiquitous
Computing Environments. PerCom 2004: 341-345

[18] Tatsuo Nakajima, Servers: A framework for creating

a society of appliances, Springer-Verlag London Ltd,
Volume 7, Numbers 3-4, March 2003

[19] The ubiquitous service-oriented network (USON)-an

approach for a ubiquitous world based on P2P
technology Takemoto, M.; Sunaga, H.; Tanaka, K.;
Matsumura, H.; Shinohara, E.; Peer-to-Peer Computing,
2002. (P2P 2002). Proceedings. Second International
Conference on , 5-7 Sept. 2002

[20] Valtchev, D.; Frankov, I.;Service gateway

architecture for a smart home, Communications
Magazine, IEEE , Volume: 40 , Issue: 4 , April 2002

[21] Hall, R.S.; Cervantes, H.;Challenges in building

service-oriented applications for OSGi Communications
Magazine, IEEE , Volume: 42 , Issue: 5 , May 2004

[22]Sterritt,R.;Bustard, D.;McCrea, A.; Autonomic

computing correlation for fault management system
evolution; Industrial Informatics, 2003. INDIN 2003.
Proceedings. IEEE International Conference on , Aug.
21-24,2003 Pages:240 – 247

[23] Anderson, S.; Hartswood, M.; Procter, R.;

Rouncefield, M.; Slack, R.; Soutter, J.; Voss, A.;Making
autonomic computing systems accountable: the problem
of human computer interaction;Database and Expert
Systems Applications, 2003. Proceedings. 14th
International Workshop on , 1-5 Sept. 2003

[24]http://www.cee.hw.ac.uk/~alison/ai3notes/subsection2
_5_2_1.html

[25] Aiber, S.; Gilat, D.; Landau, A.; Razinkov, N.; Sela,

A.; Wasserkrug S.; Autonomic self-optimization
according to business objectivesAutonomic Computing,
2004. Proceedings. International Conference on , 17-18
May z`04 Pages:206 – 213

[26] Ling, B.C.; Fox, A.; A self-tuning, self-protecting,

self-healing session state management layer; Autonomic
Computing Workshop, 2003 , 25 June 2003

 [27] Kiran Nagaraja, Ricardo Bianchini, Richard P.
Martin and Thu D. Nguyen; Using Fault Model
Enforcement to Improve Availability; In Proceedings of
2nd Workshop on Evaluating and Architecting System
Dependability (EASY 2002). San Jose, CA, October
202

[28] Takemoto, M.; Sunaga, H.; Tanaka, K.; Matsumura,

H.; Shinohara, E.;The ubiquitous service-oriented
network (USON)-an approach for a ubiquitous world
based on P2P technology Peer-to-Peer Computing, 2002.
(P2P 2002). Proceedings. Second International
Conference on , 5-7 Sept. 2002

[29] Zhu, H.; Parashar, M.; Yang, J.; Zhang, Y.; Rao, S.;

Hariri, S.; Self-adapting, self-optimizing runtime
management of Grid applications using PRAGMA;
Parallel and Distributed Processing Symposium, 2003.
Proceedings. International , 22-26 April 2003

[30] Derere, L.; Case-based reasoning: diagnosis of faults

in complex systems through reuse of experience; Test
Conference, 2000. Proceedings. International , 3-5 Oct.
2000 Pages:27 – 34

[31] Akbas, E.; System independent and distributed fault

management system; Computers and Communication,
2003. (ISCC 2003). Proceedings. Eighth IEEE
International Symposium on , 30 June-3 July 2003
Pages:1359 - 1363 vol.2

[32] Nicholas Chase; Understand the Autonomic

Management Engine;
https://www6.software.ibm.com/developerworks/educati
on/ac-ame/ac-ame-a4.pdf

