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Abstract: In this paper, an abstract Air Traffic Control 
(ATC) System is modeled using Formal Methods, in 
terms of Z-notation. ATC system is a highly distributed 
and safety critical system. For modeling of distributed 
nature of ATC system, a separate queue of flying 
aircrafts is maintained at each controlled airspace. To 
ensure safety, it is mandated that each airspace and 
runway do not exceed its capacity limit in all state 
operations. Firstly, Requirements Analysis is done 
using UML diagrams and then the Formal ATC system 
Model is described by Z-notation. Finally, the Formal 
ATC system Model is checked and analyzed with 
Z/EVES tool-set. 
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1. INTRODUCTION 

 
Air Traffic Control (ATC) system is one of the 

most challenging highly distributed and safety critical 
systems. Safety critical systems [9, 10], such as ATC 
system in which failure has severe consequences, the 
basic need is to identify and remove errors before 
system is deployed. Formal Methods make it possible to 
analyze and prove certain properties of the system that 
identify potential errors and inconsistencies at 
specification level whereas in informal approaches 
errors and inconsistencies are identified only during 
testing phase. Therefore, cost of removing errors is 
reduced because it increases rapidly as project 
progresses. Formal Methods ensure that system is 
correct and consistent with respect to its requirements 
giving high confidence in system to be built. 

ATC system is also a highly distributed system. 
The task of safe journey of any aircraft is distributed 
amongst many controllers (computer-based system), 
which collaborate and direct an aircraft within their area 
of control. Each controller monitors and tracks the 
number of aircrafts in its area of control and ensures the 
safety. 

ATC system has been an important research area. 
Many researchers have been contributing in this area 
using various approaches. The work presented in [8] is 
a case study of ATC system exploiting Layered 
Architecture. The research in [3] is focused on the 
detection and reduction of errors caused by a human 
operator in an ATC system. The work in [12] presents 
the complex ATC system as distributed cognitive 
representations, which are primarily visible and external 

to human actors and can be used as a source for conflict 
detection. 

However, from the perspective of Formal Methods 
very little work has been done on complete ATC 
system. The work in [6] provides a case study at a very 
abstract level. It actually served as a starting point for 
our work but their work is in VDM. Similarly, to 
demonstrate the strength of a Model based language, an 
example of a simple hypothetical 
ATC system using Sum Language, dialect of Z-
Notation, and Cogito Methodology is presented in 
[11]. There is also given the idea of distributed 
architecture of ATC system abstractly. Our work is in 
Z-notation because apart from other techniques, the rich 
mathematical notations offered by Z make it possible to 
reason rigorously and effectively about the behavior of 
specified system. Unlike the work done in [6], our work 
is more focused on distributed nature of ATC system 
and covers all phases of a flight i.e takeoff till landing 
ensuring safety at each phase. In [6, 11], safety in terms 
of exceeding capacity limitation of airspace is defined. 
Our work not only ensures capacity restriction in 
airspace but also on runways and defines safety 
properties in all phases of the flight from takeoff till 
landing. 

The main objectives of this paper are: (i) applying 
formal methods to model critical systems, (ii) 
integration of formal and informal approaches, and (iii) 
proposing an abstract model ensuring correctness of 
formal specification of the system. 

In Section 2, Formal Methods are introduced. In 
Section 3, Air Traffic Control system is described. 
Requirements Analysis of ATC System is done in 
Section 4 and Formal Model of ATC system is 
presented in Section 5. Finally concluding remarks are 
given in Section 6. 

 
2. FORMAL METHODS 

 
Formal Methods is an emerging technology that 

comprises of using mathematics for writing precise and 
unambiguous specifications. It provides the means for 
analyzing and proving certain properties of system to be 
built so that errors in specifications can be identified 
and removed. Using mathematical refinements, Formal 
Methods are used in every stage of development 
process, ensuring the development of high quality and 
correct system with respect to its requirements. There 
are more than 90 techniques of Formal Methods 
amongst them usage of Z-notation and Z/EVES tool-set 
is demonstrated in this paper. 
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3. AIR TRAFFIC CONTROL SYSTEM 
 

ATC is the supervision of airborne and taxiing 
aircraft by ground-based controllers [4]. In many 
countries, ATC services are provided throughout the 
majority of airspace, and its services are available to all 
types of aircrafts. The Airspace is divided into Zones or 
Centers, and each Zone is divided into Sectors. An air 
traffic controller (computer-based system), which must 
collaborate with other controllers and with pilots, 
manages each airspace Sector. During the flight from 
source to destination, an aircraft is handed off from 
Sector to Sector and Center to Center. Through out the 
flight, important flight data of an aircraft is maintained. 
Figure 1 shows an aircraft during phases of its flight. 

 
ApproachTake off Departure Enroute Landing

 
Figure 1. Phases of a Flight 

 
4. REQUIREMENTS ANALYSIS 
 

The basic requirement of an ATC system is to 
monitor and track aircraft from takeoff till landing. The 
safety of aircraft within air or on runway needs to be 
ensured. The information delivered to pilot about 
weather or navigation must be provided seamlessly and 
the maintenance of orderly and swift flow of air traffic 
must be guaranteed. 

The domain being very large and complex and 
hence cannot be modeled completely in this research 
paper. Our work covers the following requirements: 

• Modeling of airspace and runway controlled by a 
controller (Controlled Airspace and Runway). 

• Modeling of controller currently on duty (On-duty 
Controller) and controller to which airspace or 
runway is assigned (Active Controller). 

• Modeling of airspace to which controller is assigned 
(Activated Airspace) and airspace in which aircrafts 
are flying (Utilized Airspace). 

• Monitoring of airspace so that the number of 
aircrafts flying within that airspace do not exceed its 
capacity limit. 

• Modeling of aircrafts and maintenance of their 
important flight data like speed, heading and 
altitude. 

• Takeoff – a vacant runway not being used by any 
other aircraft is searched and assigned to the aircraft 
ready to takeoff. Controller of assigned runway then 
controls the aircraft. 

• Departure – after successful takeoff, a controlled 
airspace whose capacity is not exceeded is searched. 
Aircraft now ends its contact with ground control 
and is controlled by controller of assigned airspace. 

• Enroute – depending on the route, aircraft is handed 
off from controller to controller provided capacity 
limit of receiving airspace is not violated. After each 
successful handoff the aircraft closes its 
communication with previous controller and 
communicates with the controller of receiving 
airspace. 

• Approach – when an aircraft requests for its arrival, 
a vacant runway is searched. If it is found, the 
aircraft is connected to ground controller and 
contact with airspace controller goes to an end. 

• Landing – during landing it is ensured that runway 
is vacant. After successful landing, the contact 
between aircraft and runway controller ends. 

The set of requirements, described above, are 
modeled using Use-case Diagram of Unified Modeling 
Language (UML) [2] as shown in Figure 2. The ellipses 
inside system box represent system’s functionality as 
viewed by external actor of ATC system (Controller). 
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Figure 2. Use-case Diagram of ATC system 

The Class Diagram of UML models the static 
components of a system represented as boxes and 
relationship between them. Figure 3 shows the Class 
Diagram of ATC System. 
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Figure 3. Class Diagram of ATC system 
 
5. FORMAL MODEL OF ATC SYSTEM 
 

The ATC system Model is formalized using Z- 
notation [7]. The Z-notation is based upon set theory 
and mathematical logic. Mathematical objects and their 
properties are collected together in schemas: patterns of 
declaration and constraints (invariants). 
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The following three abstract data types are used in 
formal model. The data types of Controller and 
Airspace have been taken from [6, 11]. 

• Controller – set of all controllers 
• Airspace – set of all airspaces 
• Runway – set of all runways 

5.1 Core ATC Functionality 

The core functionality of ATC system is specified in 
a schema named ATCMain. 

∪_ ATCMain _____________________ 
→flightControl: Airspace ♥ Controller 
→groundControl: Runway ♥ Controller 
→flightQueue: Airspace ♥ seq Aircraft 
→ground: Aircraft ♥ Runway 
→on_duty: Π Controller 
→capacity: Airspace ♣ Ν 
→activeController: Controller 
→activatedAirspace: Airspace 
→utilizedAirspace: Airspace 
∩_______________ 
→activeController ε ran flightControl  
→ ϖ activeController ε ran groundControl 
→ ƒ ran flightControl Ι ran groundControl = 0 
→activatedAirspace ε dom flightControl 
→utilizedAirspace ε dom flightQueue  
→ ƒ ©flightQueue utilizedAirspace〉 ⎣ 0 
→dom flightControl ζ dom capacity 
→ran flightControl ζ on_duty  
→ran groundControl ζ on_duty 
→dom flightQueue ζ dom flightControl 
→ran ground ζ dom groundControl 
→Αs: Airspace 
→   ∞ s ε dom flightQueue ƒ s ε dom flightControl 
→     ƒ s ε dom capacityƒ ©flightQueue s〉 ε Φ (Ζ ξ Π (Ζ ξ 
→        :altitudeLimit:Ζ; currentAltitude:Ζ; currentSpeed:Ζ; 
→        destination: Airspace;heading: Ζ; source: Airspace; 
→        speedLimit: Ζ∫)) ƒ  # ©(flightQueue s)〉 ⎠ capacity s 
→Αs1, s2: Airspace 
→   ∞ s1 ε dom flightControl ƒ s1 ε dom flightQueue 
→     ƒ s1 ε dom capacity ƒ s2 ε dom flightControl 
→     ƒ s2 ε dom capacityƒ s2 ε dom flightQueue ƒ s1 ⎣ s2 
→     ⇒ ©flightQueue s1〉 Ι ©flightQueue s2〉 = 0 
∠___________________________ 

The state variables defined in schema are 

A partial injective function of Airspace and 
Controller (as in [6, 11]) is represented using the 
variable flightControl. It means, there can be zero 
or exactly one Controller for each Airspace. Similarly, a 
Controller can control zero or exactly one Airspace at a 
time. 

A partial injective function of Runway and 
Controller is defined as variable groundControl. It 
means, there can be zero or exactly one Controller for 
each Runway. Similarly, a Controller can control zero 
or exactly one Runway at a time. 

Unlike [11], the relation between Airspace and its 
queue of Aircrafts is modeled as a partial injective 
function in variable flightQueue. It means, there 
can be zero or exactly one queue of flying Aircrafts for 

each Airspace. Similarly, a sequence of Aircrafts is 
unique for each Airspace having no duplication. 

A partial injective function of Aircraft and Runway 
is represented using the variable ground. It means, 
there can be zero or exactly one Aircraft on each 
Runway. Similarly, a Runway can have zero or one 
Aircraft at a time. 

The set of Controllers currently on duty is 
represented as variable on_duty (as in [6, 11]). 

Unlike [6, 11] the relation between Airspace and 
natural number is represented as a partial function, 
using the variable capacity. It means, an Airspace 
can have zero or exactly one capacity limit. Similarly, 
one or more Airspace can have same capacity limit. 

Invariants 

Some constraints specified in [6, 11] have been 
enhanced and translated into Z-Notation. Following 
invariants are defined in schema ATCMain. 

1. A Controller is an Active Controller if it controls an 
Airspace or Runway and there is no Controller 
controlling an Airspace and a Runway 
simultaneously. 

2. An Airspace is activated if it has a Controller. 
3. An Airspace is utilized if it has a Controller and one 

or more Aircrafts are flying in it. 
4. Each controlled Airspace must have a capacity limit. 
5. The Controller controlling an Airspace must be on-

duty. 
6. The Controller controlling a Runway must be on-

duty. 
7. All Airspaces used during the flight must have a 

Controller. 
8. All Runways used in ground phase of flight must 

have a Controller. 
9. All controlled Airspaces with a capacity limit, 

having Aircrafts, must control finite set of Aircrafts 
according to its capacity. 

10. All controlled Airspaces with a capacity limit, 
having queue of Aircrafts, each Aircraft belongs to 
exactly one Airspace at a time without duplication. 

5.2 Aircraft 

The schema Aircraft describes flight data of 
Aircraft utilizing ATC services. Each Aircraft is 
assigned a unique identification mark called 
callsign, the variable Aircrafts represents a 
total function. It means, each callsign is assigned to 
exactly one Aircraft and no two Aircrafts have the same 
callsign. 
[callsign] 
Aircrafts == callsign φ Aircraft 
∪_ Aircraft ______________________ 
→source: Airspace 
→destination: Airspace 
→currentSpeed: Ν 
→currentAltitude: Ν 
→heading: Ν 
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→speedLimit: Ν 
→altitudeLimit: Ν 
∩_______________ 
→source ⎣ destination 
→currentSpeed ⎠ speedLimit 
→currentAltitude ⎠ altitudeLimit 
→heading ⎠ 270 
∠___________________________ 

The state variables defined in schema are 
A Airspace from which aircraft has flown is 

represented by variable source. 
A Airspace to which aircraft is destined to land is 

represented by variable destination. 
The speed, altitude, heading, speed limit, and altitude 

limit of an Aircraft are represented as natural numbers 
in variables currentSpeed, currentAltitude, 
heading, speedLimit, altitudeLimit 
respectively. 

Invariants 

1. An Aircraft cannot have same source and 
destination. 

2. The current speed should not exceed speed limit of 
Aircraft. 

3. The current altitude should not exceed altitude limit 
of Aircraft. 

4. The heading of an aircraft should not be greater than 
360 degrees. 

5.3 Monitoring of Airspace 

This operation is specified in a schema named 
MonitorAircraft. The input airspace is monitored 
so that the number of Aircrafts flying in it does not 
exceed its capacity. 
∪_ MonitorAirspace _________________ 
→ΞATCMain 
→s?: Airspace 
∩_______________ 
→s? ε dom flightControl  
→s? ε dom capacity  
→s? ε dom flightQueue 
→©flightQueue s?〉ε Φ (Ζ ξ Π (Ζ ξ :altitudeLimit: Ζ; 
→     currentAltitude: Ζ; currentSpeed: Ζ; heading: Ζ; 
→     destination:Airspace;source:Airspace;speedLimit: Ζ∫)) 
→# ©(flightQueue s?)〉 ⎠ capacity s? 
∠___________________________ 

Invariants 

1. The input Airspace must have a Controller. 
2. The input Airspace must have a capacity limit. 
3. The input Airspace must have a queue of Aircrafts 

flying in it. 
4. The input Airspace must have a finite set of 

Aircrafts flying in it. 
5. The input Airspace must control Aircrafts within its 

capacity limit. 

5.4 Takeoff an Aircraft 

This operation is specified in schema named 
TakeOff. It takes an Aircraft as input that is ready for 

takeoff, after clearance of all ground activities. A vacant 
Runway not being used by any other Aircraft is 
searched and assigned to the Aircraft given as input. If a 
vacant controlled Runway is found, it is allocated to the 
Aircraft. The Controller of assigned Runway now 
controls the Aircraft. 

∪_ TakeOff ______________________ 
→∆ATCMain 
→a?: Aircraft 
∩_______________ 
→Αs: Airspace 
→   ∞ s ε dom flightControl ƒ s ε dom flightQueue 
→     ƒ s ε dom capacity ƒ flightQueue s ε seq Aircraft 
→     ƒ flightQueue s ℑ {a?} = ©〉 
→a? ™ dom ground 
→Εr: Runway 
→   ∞ r ε dom groundControl ƒ r ™ ran ground 
→     ƒ (Εa1, a2: Aircraft 
→            ∞ (a1 � r ε ground  
→  ƒ a2 � r ε ground 
→  ⇒ a1 = a2)) 
→     ⇒ ground' = ground Υ {(a? � r)} 
∠___________________________ 

Invariants 

1. The input Aircraft, ready for takeoff, should not be 
in flight. It means, all controlled Airspaces with a 
capacity limit having a finite set of aircrafts flying in 
it must not have a duplicated entry of input Aircraft. 

2. The input Aircraft, ready for takeoff, should not 
have a duplicated entry on any Runway. 

3. Each controlled vacant Runway must be assigned to 
exactly one Aircraft at a particular time. 

5.5 Departure of an Aircraft 

This operation is specified in a schema named 
Departure. During this phase Aircraft, given as 
input, enters the airspace after leaving the ground. After 
successful takeoff of Aircraft, given as input, a 
controlled Airspace whose capacity is not exceeded is 
searched. No criteria of selecting the Airspace and 
connectivity between them are specified. Aircraft now 
ends its contact with ground control and is controlled by 
Airspace controller. 

∪_ Departure ____________________ 
→∆ATCMain 
→a?: Aircraft 
∩_______________ 
→Αs: Airspace 
→   ∞ s ε dom flightControl ƒ s ε dom capacity 
→     ƒ s ε dom flightQueueƒ flightQueue s ε seq Aircraft 
→     ƒ flightQueue s ℑ {a?} = ©〉 
→a? ε dom ground 
→Εs: Airspace 
→   ∞ s ε dom flightControl ƒ s ε dom flightQueue' 
→     ƒ s ε dom flightQueue ƒ s ε dom capacity 
→     ƒ flightQueue s ε seq Aircraft 
→     ƒ # ©(flightQueue s)〉 < capacity s 
→     ⇒ flightQueue' s = flightQueue s ⊥ ©a?〉 
→ground' = {a?} ψ ground 
∠___________________________ 



Journal of Independent Studies and Research (JISR) 
Volume 5, Number2, July 2007 
 

11

Invariants 

1. All controlled Airspaces with a capacity limit 
having a finite set of Aircrafts flying in it must not 
have a duplicated entry of input Aircraft. 

2. The Aircraft, given as input, must be successfully 
taken off. 

3. A controlled Airspace, with a capacity limit having 
finite set of Aircrafts flying in it, is searched 
provided the number of Aircrafts in it is less then its 
capacity limit. 

5.6 Handover an Aircraft 

The concept of handover of an aircraft given in [11] 
has been enhanced and translated into Z-Notation as 
schema named HandOff. It is used in enroute phase of 
flight. Depending on the route, Aircraft (input) is 
handed off from Controller (input) to Controller (input) 
provided capacity of receiving Airspace is not violated. 
After successful handoff, the Aircraft closes its 
communication with previous Controller and 
communicates with receiving Airspace Controller. 

∪_ HandOff _____________________ 
→∆ATCMain 
→a?: Aircraft 
→from?, to?: Airspace 
∩_______________ 
→from? ε dom flightControlƒ from? ε dom flightQueue 
→ ƒ from? ε dom capacity ƒ flightQueue from? ε seq Aircraft 
→to? ε dom flightControl ƒ to? ε dom flightQueue 
→ ƒ to? ε dom capacity 
→a? ™ dom ground 
→flightQueue from? ℑ {a?} ⎣ ©〉 
→©flightQueue to?〉ε Φ (Ζ ξ Π(Ζξ:altitudeLimit:Ζ; heading: Ζ; 
→  currentAltitude: Ζ; currentSpeed: Ζ; destination: Airspace; 
→ source: Airspace; speedLimit: Ζ∫)) 
→# ©(flightQueue to?)〉 < capacity to? 
→from? ε dom flightQueue' 
→flightQueue' from? = flightQueue from? \ ©a?〉 
→to? ε dom flightQueue' ƒ flightQueue to? ε seq Aircraft 
→flightQueue' to? = flightQueue to? ⊥ ©a?〉 
∠___________________________ 

Invariants 

1. The Airspace, to which an Aircraft currently 
belongs, must be a controlled Airspace with a 
capacity limit having a queue of Aircrafts flying in 
it. 

2. The Airspace, to which an Aircraft is desired to go, 
must be a controlled Airspace with a capacity limit 
having a queue of Aircrafts flying in it. 

3. The input Aircraft, ready for handoff, should not 
have a duplicated entry on any Runway. 

4. The input Aircraft must belong to Airspace from 
which it is handed off, given as input. 

5. The Airspace, to which Aircraft is handed off, must 
have finite set of Aircrafts flying in it. 

6. The Airspace, to which Aircraft is handed off, must 
have Aircrafts less than its capacity limit. 

5.7 Descent of an Aircraft 

This operation is specified in a schema named 
Approach. During this phase, the Aircraft leaves 
Airspace and enter the Airspace of destination Airport 
also known as Terminal Airspace. The Aircraft given as 
input requests arrival and a controlled vacant Runway is 
searched. If found Aircraft is connected to ground 
Controller and contact with airspace Controller ends. 

∪_ Approach ______________________ 
→∆ATCMain 
→a?: Aircraft 
∩_______________ 
→a? ™ dom ground 
→Εs: Airspace 
→   ∞ s ε dom flightControl ƒ s ε dom flightQueue 
→     ƒ s ε dom capacity ƒ flightQueue s ε seq Aircraft 
→     ƒ s ε dom flightQueue' ƒ flightQueue s ℑ {a?} ⎣ ©〉 
→     ⇒ flightQueue' s = flightQueue s \ ©a?〉 
→Εr: Runway 
→   ∞ r ε dom groundControl ƒ r ™ ran ground 
→  ⇒ ground' = ground Υ {(a? � r)} 
∠____________________________ 

Invariants 

1. The input Aircraft, ready for arrival, should not have 
a duplicated entry on any Runway. 

2. The input Aircraft must belong to a controlled 
Airspaces with a capacity limit having a finite set of 
Aircrafts flying in it. 

3. The Runway assigned to the Aircraft must be 
controlled and vacant. 

5.8 Landing 

This operation is specified in a schema named 
Landing. It deals with landing of Aircraft, given as 
input. During landing it is ensured that Runway is 
controlled and vacant. It is also made sure that it is 
assigned to exactly one Aircraft at a time. After 
successful landing, the contact of Aircraft and Runway 
controller ends. 

∪_ Landing _______________________ 
→∆ATCMain 
→a?: Aircraft 
∩_______________ 
→Αs: Airspace 
→   ∞ s ε dom flightControl ƒ s ε dom capacity 
→     ƒ s ε dom flightQueue ƒ flightQueue s ε seq Aircraft 
→     ƒ flightQueue s ℑ {a?} = ©〉 
→a? ε dom ground 
→Εr: Runway 
→   ∞ r ε dom groundControl 
→     ƒ a? � r ε ground 
→     ƒ (Εa1, a2: Aircraft  
→      ∞ (a1 � r ε ground ƒ a2 � r ε ground 
→      ⇒ a1 = a2)) 
→ground' = {a?} ψ ground 
∠____________________________ 

Invariants 

1. All controlled Airspaces with a capacity limit 
having a finite set of Aircrafts flying in it must not 
have a duplicated entry of input Aircraft. 
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2. There must be a Runway assigned to the input 
Aircraft. 

3. The Runway assigned to Aircraft must be controlled 
and vacant and there must be exactly one aircraft on 
the Runway. 

The model is verified and strengthened using 
Z/EVES Toolset [5]. Z/EVES is a tool for analyzing Z 
specifications. It can be used for parsing, type checking, 
domain checking, schema expansion, precondition 
calculation, refinement proofs, and proving theorems. 
While proving our ATC system model in Z-EVES, 
some proof errors were identified and removed. Thus, 
our Model has been checked and strengthened by the 
Tool. 

 
6. CONCLUSION 

 
The power of applying Formal Methods in 

modeling of a complex, highly distributed and safety 
critical system is shown, which was one of the 
objectives of our research. The Informal Model of ATC 
system developed using UML Diagrams, has been 
formalized in terms of Z-notation. It shows informal 
approaches can be integrated into Formal Approaches, 
which was another objective of our research. By 
applying Formal Methods, a deeper insight of system to 
be built has been achieved. The errors and 
inconsistencies that were found while describing formal 
system specification of ATC system have been 
identified in Analysis phase those would have been 
detected in implementation or testing phase using 
Traditional Approaches. Therefore, the use of Formal 
Methods in this research has ensured making high 
quality, reliable and correct system specifications with 
respect to ATC system requirements specified in 
Requirements Analysis. 

Another objective of the research was to apply Z-
notation for modeling of ATC system because apart 
from other techniques, the rich mathematical notations 
offered by Z make it possible to reason rigorously and 
effectively about the behavior of specified system. Use 
of Z/EVES tool-set further analyzed the model giving 
high confidence in our ATC system. 

Despite of all these advantages, many practitioners 
are reluctant to use Formal Methods because of many 
baseless myths and misconceptions prevailing in market 
[1]. But Formal Methods are very important for 
rigorous and concrete modeling of system. This has 
been observed in development of this ATC system in 
which we resolved the ambiguities and gave the 
complete and consistent definition of our system 
requirements. 
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