
Journal of Independent Studies and Research (JISR) on Computing
Volume 6, Number1, January 2008

2

A Survey on Text Access Methods

Muhammad Rafi1 and Aslam Parvez Memon
muhammad.rafi@nu.edu.pk, aslam@szabist.edu.pk

SZABIST
Karachi, Pakistan

1 Muhammad Rafi presently working as Lecturer at National

University of Computer & Emerging Sciences, and registered
as PhD student at SZABIST, Karachi Campus

Abstract: Text is a general form of information created
and stored by computer systems. Special purpose
algorithms are required to retrieve, interpret, manipulate
and store text repositories. The importance of text
retrieval systems has grown dramatically during the
recent years due to increase in text based information
systems–WWW, Databases, XML, and Document
collections. Full text searching, signature files, and
inverted indexing are in practice for text retrieval. These
methods have failed to give optimized results especially in
the case of large compressed/uncompressed text
repositories. This study evaluates key features of the
above-stated text retrieval methods and develops a
comparison matrix for the future. This study also
proposes ideal text retrieval systems, which address the
deficiencies and shortfall of the existing methods.

Keywords: Text processing, indexing, information storage
and retrieval

1. INTRODUCTION

Information retrieval has been facing a new challenge
raised by the emergence of massive, complex structural
data in the form of large text collections whether in the
database or in documents. Major factors that are critical in
text retrieval system are search engines and underlying
indexing techniques. The process of query evaluation and
indexing in high performance text retrieval systems
usually consists of several steps. The following steps are
typically carried out:

 Query pre-processing, e.g. some kind of linguistic
normalization of words used in the query,
extension of query with synonyms checking
against thesaurus

 Launches of search engines based on pre-build
indices

 Post processing of candidate documents/record to
filter out set of result relevant to query

 Refinement of the query, based on users’
feedback, and reevaluation of the query

All these steps are important for quality of the result,

and are very time consuming and computational extensive.
Researcher tries to optimize the overall equation by simply
tuning up either step of this process. It becomes further
complicated when we try to apply these techniques for

databases or on document collection, because they both
model information in very different ways.

Database vs Document Collection

It is becoming increasingly common practice to store
large collection of text as text fields (column) in the table.
Database systems normally store and manipulate fixed
length formatted records. Relational database theorists
like to talk about the “meaning” or “semantics” of data as
being in the database (specifically its metadata, and more
specifically its constraints). The standard way to manage
text is via a full-text index, designed as follows: for
hundreds of thousands of words; the index maintains a list
of which documents the word appears in, and at which
positions in the document it appears. This is a columnar,
memory-centric approach, that doesn’t work well with the
architecture of mainstream relational products. Text
search can be carried out against many different kinds of
things. One increasingly useful target is the table of a
relational database. A standard SQL query might have
trouble finding all the references in a whole database to a
particular customer organization, product line or whatever;
a text search can do a better job. This kind of use is
becoming increasingly frequent and easily supported by
this approach.

A Document Collection is completely different from a
DBMS, as each document is an independent entity and it
contains a stream of text within. Several document
standards exist and most of them keep some secret header
to support their application specific text processing.
Search machines parse text files and store associations of
lexemes (words) with their parent document. Later, these
associations are used to search documents, which contain
query words. The process of document indexing usually
does parsing of lexemes and it is useful to distinguish
various kinds of lexemes; e.g. digits, words, complex
words, email address; since different types of lexemes can
be processed differently. In principle, the actual types of
lexemes depend on specific applications, but for plain
search it is desirable to have pre-defined common types of
lexemes. Apply linguistic rules to normalize the lexeme to
their infinitive form, so one should not bother entering
search word in specific form. Taking into account the type
of lexeme obtained before, provides rich possibilities for
normalization. Store pre-processed document in a way,
optimized for searching; for example, represent document

Journal of Independent Studies and Research (JISR) on Computing
Volume 6, Number1, January 2008

3

as a sorted array of lexemes. Along with lexemes itself, it
is desirable to store positional information to use it for
proximity ranking, so that the document which contains
more "dense" region with query words is assigned a higher
rank than one with query words scattered all over.

Ordinary full text search engines operate with a
collection of documents, where the document is
considered as a "bag of words"; i.e., there is minimal
knowledge about the document structure and its metadata.
Moreover, modern information systems are all database
driven and there is a need in IR (Information Retrieval)
style full text search inside database, with full
conformance to the database principles (ACID). That is
why many databases have built-in full text search engines,
which allow combining text searching and additional
metadata, stored in various tables and available through
powerful and standard SQL language. This paper
considers all those methods that are equally good for both
of the documents/databases text collections.

Problems related to text retrieval

In the preceding section, we have shown that the two
word documents/databases are now becoming enriched of
text-based information. There are several problems that
must be addressed in order to build ideal text retrieval
systems. The development of effective retrieval
techniques has been the core of IR research for more than
30 years. A number of measures of effectiveness have
been proposed, but the most frequently mentioned are
recall and precision. Finding text that satisfies a user's
information need is not simple, and considerable progress
has been made in developing ranking techniques that are
significantly more effective than Boolean logic.
Information routing, filtering and clipping are all
synonyms used to describe the process of identifying
relevant documents in streams of information, such as
news feeds. Instead of comparing a single query to large
numbers of archived documents, as is the case for IR,
large numbers of archived profiles are compared to
individual documents. Documents that match are sent to
the users associated with the profile. A profile is a
representation of a long-term information need and is
usually more complex than a session-based query.

Effective interfaces for text-based information
systems are a high priority for users of these systems. The
interface is a major part of how a system is evaluated, and
as the retrieval and routing algorithms become more
complex to improve recall and precision, more stress is
placed on the design of interfaces that make the system
easy to use and understandable. Interfaces must support a
range of functions including query formulation,
presentation of retrieved information, feedback, and
browsing. The challenge is to present in this sophisticated
functionality in a conceptually simple way. One of the
major causes of failures in IR systems is vocabulary
mismatch. This means that the information need is often
described using different words than are found in relevant

documents. Techniques that address this problem by
automatic expansion of the query are often regarded as a
form of "magic" by users and are viewed as highly
desirable. Vocabulary expansion can result from
transforming the document and query representations, as
with Latent Semantic Indexing, or it can be done as a form
of automatic thesaurus built by corpus analysis. Further
research in this area will make these techniques more
reliable and efficient.

Text retrieval techniques can be used to solve part of
an organization's information management problems.
Typically, a complete solution requires other text-based
tools such as routing and extraction, tools for handling
multimedia and scanned documents; such as OCR, a
database management system for structured data, and
workflow or other groupware systems for managing
documents and their use in the organization.

In past, there were three principal indexing methods—
full-text searching, inverted files and signature files—that
have been proposed for large text databases/document
collection. They remain the subject of active research.
The question related to which method is better for the
current time, where processing power, storage and
information gain has been exponentially changed, remain
unanswered. This paper is organized as follows: in
Section 2, we discuss the previous suggested techniques
that fall in the above three methods; in Section 3, we
compare and contrast the method for large collection of
text in both database/document base repository; Section 4
provides the recommendation and advice for designing
and implementing text retrieval system; Section 5 presents
our conclusion and future work.

2. PRELIMINARIES

The three methods that were previously used for text
retrieval systems [1] are full-text searching, inverted index
and signature files. All these methods have been in active
research for the last decade and a large number of their
derivatives have been suggested and implemented. We
start our discussion with Full-Text Searching.

2.1 Full-Text Searching

Full-text search (also called free search text) refers to
a technique for searching computer stored documents or
databases to retrieve a user given pattern (query text). The
search examines all of the text presented in the
document/database repository. Full-text searching
techniques became common in online bibliographic
databases in the 1970s. Most websites, search engines and
application programs (such as word processing software)
provide full-text search capabilities. The most common
approach to full-text search is to generate a complete index
or concordance for all the searchable documents or
database [4], [5], [6]. For each word (excepting stop
words, which are too common to be useful) an entry is

Journal of Independent Studies and Research (JISR) on Computing
Volume 6, Number1, January 2008

4

made which lists the exact position of every occurrence of
it within the database or document. Although very small
document/database full-text searching can be done by
serial scanning, indexing is the preferred method for
almost all full-text searching. There are currently many
problems associated with full-text; some of which are false
positive, precision and recall. These problems are due to
the fact that text is ubiquitous. The improvement in full-
text can be done by improving indexing techniques,
collecting keywords and text compression that can support
searching. Full-text search also demands the support of
field-restricted search, phrase search, proximity search and
regular expression. Other improvements can be
introduced by making search algorithms more robust,
efficient and relevant.

2.2 Inverted Files

An inverted file index [2], [6], [7], has two main parts:
a search structure or vocabulary, containing all of the
distinct values being indexed; and for each distinct value
an inverted list, storing the identifiers of the records
containing the value. Queries are evaluated by fetching
the inverted lists for the query terms, and then intersecting
them for conjunctive queries and merging them for
disjunctive queries. To minimize buffer space
requirements, inverted lists should be fetched in order of
increasing length; thus, in a conjunctive query, the initial
set of candidate answers are the records in the shortest
inverted list, and processing of subsequent lists only
reduces the size of this set. Once the inverted lists have
been processed, the record identifiers must be mapped to
physical record addresses. This is achieved with an
address table, which can be stored in memory or on disk.
An effective structure for storing vocabularies is a B1-tree.
The high branching factor, typical of these trees, means
that the internal nodes are only a small percentage of the
total vocabulary size. For example, suppose that in a B1-
tree leaves contain pointers to inverted lists, that the
vocabulary of some database contains 1,000,000 distinct
12-byte terms, and that the disk being used operates with
8-kilobyte blocks and 4-byte pointers. Then, at most 64
kilobytes are required for the internal nodes. Given this
much memory, at most one disk access is required to fetch
a vocabulary entry. Since the exact address of the inverted
list is then known, a second access suffices to retrieve the
corresponding inverted list. Other structures that are
suitable for storing vocabularies include arrays and hash
tables, with comparable performance.

2.3 Signature Files

In signature files [3], [8], [9], the documents are
stored sequentially in the “text file”. Their abstractions
are stored sequentially in the “signature file”. When a
query arrives, the signature file is scanned sequentially and
a large number of non-qualifying documents are discarded.
The rest are either checked (so that the “false drops” are
discarded) or they are returned to the user as they are. A

document is called a “false drop” if it does not actually
qualify in a query, while its signature indicates the
opposite. The method is faster than full text scanning,
mainly, because the size of the signature file is much
smaller.

However, it is expected to be slower than inversion
for large files [8]. It requires much smaller space
overhead than inversion. If carefully designed, the
signature file method can handle queries on part of words
and can tolerate errors. One of the difficulties in the
comparison of inverted files and signature files is that
many variants of signature file techniques have been
proposed, and it is possible that some combination of
parameters and variants will result in a better method.

2.4 Compressed Inverted vs Compressed Signature

Files

The large collection of text generally favors the
compression techniques. The inverted lists, themselves,
are sequences of record identifiers, sorted to allow fast
query evaluation. Sorting of identifiers within inverted
lists has another important benefit: the identifiers can be
represented using variable-length codes that, for large text
databases, compress the index by a factor of about 6 to
around 5 to 10% of the data size. This approach has the
disadvantage that inverted lists must be decoded as they
are retrieved, but such decompression can be fast. An
interesting feature of compressed inverted lists is that the
best compression is achieved for the longest lists, i.e. the
most frequent terms. In the limit (which, in the case of
text indexing, is a term such as “the” that occurs in almost
every record) at most one bit per record is required.

Compression brings considerable benefit to inverted
file indexes, and it is natural to ask if the same
improvements can be achieved with signature files. The
answer is no. One of the difficulties in the comparison of
inverted files and signature files is that many variants of
signature file techniques have been proposed, and it is
possible that some combination of parameters and variants
will result in a better method. But we believe that the
methods considered here are at least as good as the best
signature file techniques, and are fair representatives.

3. COMPARISON OF TECHNIQUES

The main objective of this study is to outline the
tradeoff that can be applied to large text retrieval systems.
We have carried out some experiments on different dataset.
Let us first agree with our experiment system. The whole
system consists of a Centrino 1.3 MHtz Processor, with
512MB RAM and 80GB Hard disk. Our dataset is
classified into two different categories: Database and
Document base. There are three bags of data: 100MB,
500MB and 1GB. We first apply full-text searching
techniques for the random query from database and
document base. In database, we have not noticed any
significant performance change while document base

Journal of Independent Studies and Research (JISR) on Computing
Volume 6, Number1, January 2008

5

system really supports signature file at this level.
Similarly, when we execute the same experiment with a
data set of 500MB, we came to know that both database
and document base are very similar in performance; the
result suggests that at this level, it is really insignificant to
talk about information platform. The third level of
experiment is carried out with a data set of 1GB; it has
been observed that for such a large collection it really does
matters which techniques you should use.

4. RESULTS

We first present our experimental results as an overall
picture of dataset and time to retrieval. The following
result demonstrated that at 100MB of document base, all
the techniques seem to produce the same time. It is
because all the algorithms at this level easily tradeoff the
computational requirement. Hence, it is insignificant to
discuss the performance of document base at this level.

0
0.1
0.2
0.3
0.4
0.5

10
0M

B

50
0M

B

1G
B

10
0M

B

50
0M

B

1G
B

Database Document
Base

FTS

Inverted
Index

Signature
Files

Fig. 1. Results of dataset retrieval response time

Next result of our experiment suggests that, as we

increase the data set for our experiment, the performance
ratio of inverted index remains the same. Hence, it is a
good candidate for implementing text retrieval in large
collection of both database and document collection.

0 0.2 0.4 0.6

100MB

500MB

1GB

100MB

500MB

1GB

D
at

ab
as

e
D

oc
um

en
t

Ba
se

Signature Files

Inverted Index

FTS

Fig. 2. Results of dataset size vs. performance

5. CONCLUSION

Our conclusions are unequivocal. For typical
document indexing applications, current signature file
techniques do not perform well compared to current
implementations of inverted file indexes. Signature files

are much larger; they are more expensive to build and
update; they require a variety of parameters to be fixed in
advance, involving analysis of the data and tuning for
expected queries; they do not support proximity queries
other than adjacency; they support ranked queries only
with difficulty; they are expensive for disjunctive queries;
they are highly intolerant of range in document length;
their response time is unpredictable; they do not allow
easy addition of functionality; they do not scale well; and,
most important of all, they are slow. Even on queries
expressly designed to favor them, signature files are
slower than inverted files. The current trends in computer
technology, in which the ratio of processor speed to disk
access time is increasing, further favor inverted files.

ACKNOWLEDGMENT

This work was done for the partial fulfillment of

requirement in the course of Independent Study, for which
the author is registered as a full-time Ph.D student.
Author would like to thank course supervisor, Aslam
Parvez Memon, for his valuable advise and guidance
throughout the semester in completing this work.

REFERENCES

[1] R.L. Haskin. “Special Purpose Processor for Text

Retrieval”, Database Engineering, 4 (1): pages 16-25,
1981.

[2] A.F. Cardenas. “Analysis and Performance of

Inverted Data Base Structures”, Communication of
the ACM, 18 (5): pages 253-263, 1975.

[3] J. Zobel, Alistair Moffat and Kotagiri. “Inverted Files

Versus Signature Files for Text Indexing”, ACM
Transaction on Database Systems, 23 (4): pages 453-
490, 1998.

[4] Bird, R. M., Newsbaum, J. B., and Trefftzs, J. L. 1978.

Text File Inversion: An evaluation. In Proceedings of
the 4th Workshop on Computer Architecture for Non-
Numeric Processing. Blue Mountain Lake, NY, ACM
Press, pages 42–50.

[5] Couvreur, T. R., Benzel, R. N., Miller, S. F., Zeitler,

D. N., Lee, D. L., Singhal, M., Shivaratri, N., and
Wong, W. Y. P. 1994. An analysis of performance
and cost factors in searching large text databases
using parallel search systems. J. Amer. Soc. Inform.
Science 45, 7, pages 443–464.

[6] Faloutsos, C. and Oard, D. W. 1995. A survey of

information retrieval and filtering methods. Tech. rep.,
University of Maryland Institute for Advanced
Computer Studies Report, University of Maryland at
College Park, MD.

Journal of Independent Studies and Research (JISR) on Computing
Volume 6, Number1, January 2008

6

[7] Faloutsos, C. and S. Chrtstodoulakis. “Signature Files:
An Access Method for Documents and its Analytical
Performance Evaluation”, ACM Trans. on Office &
formation Systems, vol. 2, no. 4, Oct. 1984.

[8] Van-Ripbergen, CJ., Information Retrieval,

Butterworths, London, England, 1979. 2nd edition.

[9] J. Zobel, Alistair Moffat and Kotagiri. “Guidelines for
Presentation and Comparison of Indexing
Techniques”, SIGMOD Record, 25 (3): 10-15, 1996.

