
Journal of Independent Studies and Research (JISR) on Computing
Volume 6, Number1, January 2008

7

Constructing a Plug-In Algorithm Generic Database for Future Enterprise

Syed Rehan Zafar and Muhammad Nadeem
SZABIST

Karachi, Pakistan

Abstract: An important function of a data engineering
system is to support incremental and corporative
construction of Plug-In Algorithm in an orderly way.
Basic idea for this paper is to identify and explore a new
vision for generic database modeling and its
implementation. In this paper, we focus on what is the
importance and how an analytical framework works in
this research to give a new concept of developing a
generic schema after a continuous learning, and practices
of various domains.

Keywords: Design pattern, object oriented programming,
inheritance, composition, aggregation, framework, MMIS

1. INTRODUCTION

The advancement in the computer technology (both
hardware and software) has led us to see its use and
application in the varied diverse existing, new and
emerging areas. Through this paper we basically focus on
the process of implementing a plug-in algorithm and
integrating that algorithm into Analysis Services,
including with the stub code and develop the testing phase
of a “shell” plug-in algorithm integrated into Analysis
Services [1]. It means that knowledge developers of data
mining algorithms can concentrate their efforts on their
algorithms, as opposed to worrying about integration with
Analysis Services.

This paper also identifies and explores a new vision
for generic database modeling, development of new
concepts of generic schema after continuous learning and
practices of various domains e.g.: variety of choices for
employee records in textile industry and automobile
industry etc. Customer/Domain experts will provide
information, this will increase the learning of the database
using the learning tier; and will be responsible for
checking existing information in the generic schema,
generic patterns and standards that are required for those
domain experts. In this way, schema will update itself and
in the end it will become a generic system that can fulfill
any Enterprise and any other these types of systems. So, it
will eventually lead towards a very generic Database
schema which acts like a brain of the system.

Schema is responsible not only to store the field or
data required in that domain, but also stores the behavior
of those domains and maintains metadata which will also
be helpful to use this system to any existing system. In
this way, this metadata tier will act as communicator and
negotiator between the database creational tier and the
database of another system.

Schema also holds the behaviors of the domain. In
this way, it will store the best practices and standards,
which are used by those domains. Schema also helps to
develop the architectural patterns that contain enterprise
level patterns layers and other functional and structural
patterns information; that can be used at any level of
complete enterprise applications.

Using patterns and services, repository system can
identify where/what service(s), what operation(s) and
which architecture is/are required through the metadata;
and generic data types information.

1.1 Framework

A framework is a reusable design defined by a set of

abstract classes and the ways their instances collaborate
with each other. This set of cooperating classes makes up
a reusable design for a specific class of enterprise software
[2,3]. For example, a framework can be geared towards
building graphical editors for different domains like
artistic drawing, music composition and mechanical CAD
[4], [5]. Another framework can help in building
compilers for different programming languages and target
machine [6]. Yet another might help in building financial
modeling applications [7]. A framework can be
customized to a particular application by creating
application specific subclasses of abstract classes from the
frameworks.

Fig. 1. Generic Database Architecture

By definition, a framework is an object-oriented

design. It does not have to be implemented in an object-
oriented language, even though it usually is. According to
[8], it is useful to classify framework by their scope,

Journal of Independent Studies and Research (JISR) on Computing
Volume 6, Number1, January 2008

8

although the benefit and design principle underlying
frameworks are largely independent of which domain they
are applied to. There are three categories of framework
according to their scope-system: infrastructure framework,
middleware integration framework and enterprise
application framework [9].

Further, white-box frameworks require application
developers to have comprehensive knowledge of the
frameworks’ internal structure; so that developers can
extend and reuse the existing framework through
inheritance or generalization. It relies heavily on object-
oriented language features, like inheritance and dynamic
binding, to achieve extensibility.

In contrast, black-box frameworks support

extensibility by defining interfaces for components that
can be plugged into the framework via object composition.
They are structured using object composition and
delegation more than inheritance. As a result, black-box
frameworks are generally easier to use and extend than
white-box frameworks [4, 9]. However, black box
frameworks are more difficult to develop since they
require framework developers to define interfaces and
hooks that anticipate a wider range of potential use-cases
[10].

1.2 Framework for Plug-in Algorithm for Generic

Database

A framework states the architecture or blueprint of
any application. It defines the overall structure, the
partitioning into classes and objects, how the classes and
objects collaborate [9], what their functions and controls
are. A framework predefines these design parameters in
an abstract level, so that the application designer or
implementer can concentrate on the specifics of any
application. Plug-in Algorithm Framework Generic
Database developed, hence, captures the design decisions
that are common to the various domains. For example, the
database connections, table schema, triggers, behavioral
procedure, DDL and DDM capture data from user and
display output to screen [1]. These are the common
elements that the system will learn and stores this
information. We are using our Algorithm with framework
to define a generic way of learning and searching
mechanism. This will help us in all domains, and then
emphasize design reuse over code reuse.

1.3 Design Patterns

“Each pattern describes a problem which occurs over
and over again in our environment and then describes the
core of the solution to that problem, in such a way that you
can use this solution a million times over, without ever
doing it the same way twice” [9]. Focusing at structures
that solve similar problems, one could distinguish
similarities between designs that were high quality or
efficiency. These similarities are called patterns.
Therefore, software design patterns actually arose from

architecture and anthropology [11]. So, design pattern
names, abstracts and identifies the key aspects of a
common design structure that make it useful for creating a
reusable object-oriented design.

2. PLUG-IN ALGORITHM FRAMEWORK

ARCHITECTURE

Plug-in Algorithm Framework Architecture is best-
expressed using class diagram. According to [5], three
perspectives can be used in drawing any UML model, but
this breakdown is most noticeable in connection with the
class diagram.

The first perspective is conceptual and conceptual
diagrams should represent the concepts related to classes
that implement them; but there is often no direct mapping.
In fact, a conceptual model should be drawn with little or
no regard for the software that might implement it. Thus it
can be considered language-independent. The second
perspective is specification. This step focuses on the
interfaces of the software but not the implementation.
Object-oriented development puts great emphasis on
interface and implementation. However, this may not be
true in practice because the notion of class in an object-
oriented language combines both interface and
implementation. Last is the implementation perspective.
This is the most often used perspective because the
software developer will follow the blue print to write the
actual code.

3. CONCLUSION

The result of the research paper is a flexible and a
generic framework for plug-in algorithm architecture,
which includes the framework. It is a very robust
framework, which is reusable and extended able. The
existing frameworks that are in use lack reusability and
has performance problem.

The architecture is hardware independent and also
software independent. The front end of the architecture
could be desktop application or the web application; it is
flexible enough to encompass both of them quite easily.

Another point of interest is the database
independence. The framework is designed to handle all
type of database. There are many features that are specific
to database and it is quite reasonable to use them; as they
are designed specifically to that database system. All of
these handlings are done in separate database controller
class. The framework does know about what database is
used. The database factory is responsible for creating the
appropriate database class. The framework talks to a base
class.

3.1 Future Work

The main work now begins by implementing the

framework in any language, as required. Whether it is

Journal of Independent Studies and Research (JISR) on Computing
Volume 6, Number1, January 2008

9

Java/C# or any language that supports object oriented
programming, this framework can be implemented.
However, one thing that might be considered while
implementing the framework is that the language in which
it is implemented must be able to support all the new
features like mobile communication/database connection
and language; itself has a framework that is extensible
otherwise compatibility issues may rise.

3.2 Challenges

According to the Gang of Four theory and concepts,
the hard part about object-oriented design is decomposing
a system into objects. The task is difficult because many
factors come into play: encapsulation, granularity,
dependency, flexibility, performance, evolution,
reusability etc. They all influence the decomposition in
the conflicting ways. This robust and extensible
framework structure is very hard to design without
experience in software architecture design.

REFERENCES

[1] Fernando Guerrero, Microsoft SQL Server 2005,

Database essential step by step.

[2] Deutsch, L. P. (1989). Design reuse and frameworks

in the Smalltalk-80 system. In Biggerstaff, T. J., &
Perlis, A. J., editors, Software Reusability, Volume II:
Applications and Experience, pages 57-71. NY, USA,
ACM Press, Addison-Wesley.

[3] Johnson, R. E., & Foote, B. (June / July 1988)

Designing reusable classes. Journal of Object-
Oriented Programming, 1(2): 22-35.

[4] Gamma, E., Helm, R., Johnson, R., & Vlissides, J.

(1995). Design Pattern: Element of Reusable
Object-Oriented Software. Boston, MA, USA,
Addison Wesley.

[5] Johnson, R. (October 1992). Documenting

frameworks using patterns. In Object-Oriented
Programming Systems, Languages, and Applications
Conference Proceedings, Pages 63-76, Vancouver,
British Columbia, Canada. ACM Press.

[6] Johnson, R. E., McConnell, C., & Lake, J. M. The

RTL system: A framework for code optimization. In
Giegerich, R., & Graham, S. L., editors, Code
Generation—Concepts, Tools, Techniques.
Proceedings of the International Workshop on Code
Generation, pages 255-274, Dagstuhl, Germany.
Springer-Verlag.

[7] Birrer, A., & Eggenschwiler, T. (July 1993).

Frameworks in the financial engineering domain: An
experience report.

[8] Campbell, R. H. & Islam, N. (1993). A Technique for
Documenting the Framework of an Object- Oriented
System, Journal of Computing Systems, 6(4).

[9] Fowler, M. & Rice, D. (2003). Patterns of Enterprise

Application Architecture, Addison-Wesley, USA.

[10] Alexander, C., Ishikawa, S., Silverstein, M., Jacobson,

M., Fiksdahl-King, I., & Angel, S. (1977). A Pattern
Language. New York, Oxford University Press.

[11] Inmon, W. H. (2002). Building the Data Warehouse.

John Wiley & Sons, third edition.

