
Journal of Independent Studies and Research (JISR) on Computing
Volume 6, Number1, January 2008

14

Information Hiding through Reversible Computing

Ali J. Zubairy and Dr. Najmi Ghani Haider
SZABIST

Karachi, Pakistan

Abstract: Information hiding has become an interesting
topic that is receiving more and more attention. It is used
in communicating the most confidential information such
as use in back channel diplomacy. Recently, many hiding
techniques have been proposed to directly conceal secret
information. Images are the most common type used for
information hiding. This paper focuses on a new
technique, which is based on the ongoing research topic of
reversible computing.
This paper presents a design of a logically equivalent
reversible machine that can hide information while
running forward and can reveal information when run in
the reverse direction.

Keywords: Information hiding, steganography, reversible
computing

1. INTRODUCTION

As evidenced from history, in difficult political times,
limitations are placed on the individual's freedom of
opinion and expression. Nowadays, there is heavy
dependence on electronic media and automated systems in
the collection and dissemination of information. The
transfer of information using these communication
channels is open to the threat of information leakage.

Clearly, it is highly desirable to protect the
communicating parties’ freedom to communicate securely
in the presence of eavesdroppers, who seek to control the
communication channels to detect and even penalize the
communication deemed by them to be non-permissible.
This is a well-understood setup in information-security
studied in the context of steganography.

1.1. Cryptography and Steganography

Cryptography refers to the technique of information
hiding by encryption, i.e. the sender uses an encryption
key to scramble the message, which is then transmitted
through a normal communication channel to the intended
recipient. The reconstruction of the original, unencrypted
message is possible only if the receiver has the appropriate
decryption key.

In the steganography approach, the secret message is
embedded in another message. Using this technology,
even the fact that a secret is being transmitted has to be
secret. The main purpose of steganography is to hide the
occurrence of such communication. While most methods
in use today are invisible to the observer's senses,
mathematical analysis may reveal statistical discrepancies

in the steganographic medium. These discrepancies
expose the fact that hidden communication is taking place,
making it detectable.

2. REVERSIBLE COMPUTING

Reversible computing is motivated by the Von
Neumann Landauer (VNL) principle [1], [2], a theorem of
modern physics stating that ordinary irreversible logic
operations (which destructively overwrite previous
outputs) incur a fundamental minimum energy cost. Such
operations typically dissipate roughly the logic signal
energy, itself irreducible due to thermal noise. This fact
threatens to end improvements in practical computer
performance within the next few decades. This particular
limit could only possibly be avoidable through reversible
computing. It “de-computes” unwanted bits, rather than
obliviously erasing them. This can avoid entropy
generation, enabling the signal energy to be preserved for
later re-use, rather than being dissipated.

The digital computer usually perceived as logically
irreversible as it performs operations that discard the
unwanted byproduct information, and utilize the same
memory space for some other instruction because its
transaction value lacks single valued inverse and hence,
are considered to be logically irreversible. Every digital
computer can be simulated by general purpose computing
machines (i.e. Turing Machine), hence, they are also
considered to be logically irreversible.

Landauer in his paper [1] raised the debatable
question of whether logical irreversibility is an
unavoidable feature of modern digital computers, arguing
that it is, and demonstrating the physical importance of
this question by showing that whenever a physical
computer discards information about its previous state it
must generate a corresponding amount of entropy.

A reversible digital logic operation can be defined as
any operation that performs an invertible (one-to-one)
transformation of the device’s local digital state space, or
at least, of that subset of states that are actually used in a
design.

Every machine can be made logically reversible by
saving the information it would otherwise discard, e.g. if
the machine saves information regarding all its operation
to an extra space with sufficient detail such that at a later
stage the previous stage can be uniquely identified, then
every machine can be made reversible. The major

Journal of Independent Studies and Research (JISR) on Computing
Volume 6, Number1, January 2008

15

disadvantage of reversibility is that it requires extra
amount of space for saving historical data.

2.1 Research in Reversible Computing

The greatest motivation for the study of hardware and
software technologies aimed for implementing reversible
computing is that the machines have a thermodynamic
loophole; that implies that they might become quite useful
as CPUs, become more and more powerful. Ordinary
electronic circuits waste some energy every time they
make a decision, but reversible computers do not. This
wasted energy exits the integrated circuit chip as heat,
which is why the newest and fastest CPUs come with heat
sink attached on top of the CPU. Some of the fastest
machines are cooled by liquid coolants, which can absorb
even more heat. The buildup of waste heat is a serious
problem and if not removed, will result in CPU
malfunction and eventual destruction.

Reversible computing offers what seems to be the
only potential way to improve the energy efficiency of
computers beyond the fundamental Von Neumann-
Landauer limit [1], [2] of kTln2 energy dissipated per
irreversible bit operation, where, k is the Boltzmann's
constant of 1.38 × 10−23 J/K, and T is the temperature of
the environment into which unwanted entropy will be
absorbed.

Reversible computing has been researched over
several years. The motivation for much of the research
has been the first seminal paper on the topic, which was
published by Charles H. Bennett of IBM research [3] in
1973. In his paper, Bennett based on the Landuer machine
model that has energy dissipation per step of about kT;
demonstrated that any machine computation can be done
with a reversible Turing machine [5]. He has created a
few basic examples of reversible Turing machine with
well-defined commands for moving the read/write head of
the tape and changing the state of the machine. The
transaction rules for these machines often look quite
similar to the Fredkin gate [4]. There is just as much
information coming out at each step as going into the gate.
This is balanced correctly so the position that leads to
another position can always be inferred and the machine
can be reversed.

The result showed that anything that can be done with
a computer could be done with a reversible computer. All
that is necessary is to find a way to save the information
from each step, so that it can be effectively run in reverse.

The original work on reversible computing was done
by Ed Fredkin [4], in which he proposed a type of logic
gate that would not expend energy. Normal gates that take
the AND of two bits are not reversible. For instance, if x
AND y is 1, then both x AND y can be recovered because
both must have been 1. But, if x AND y is 0, then nothing
conclusive can be deduced about either x or y; either x or
y may have been 1. This makes it impossible to run such a

normal gate in reverse. On the other hand, the Fredkin
gate does not discard the information so it can be reversed.

Today, the field has a substantial body of academic
literature [1], [2], [3], [5], [6]. A wide variety of
reversible device concepts, logic gates, electronic circuits,
processor architectures, programming languages, and
application algorithms have been designed and analyzed
by physicists, electrical engineers, and computer scientists.

This field of research awaits the detailed development
of a high quality, cost-effective, nearly reversible logic
device technology, one that includes, highly energy-
efficient clocking and synchronization mechanisms. This
sort of solid engineering progress will be needed before
the large body of theoretical research on reversible
computing can find practical application in enabling real
computer technology to circumvent the various near-term
barriers to its energy efficiency, including the Von
Neumann-Landauer bound.

2.2 Concept of Using Reversible Computing for

Information Hiding

Many scientists have been studying reversible
computing for quite some time. There is a significant
advancement in this technology with some real
implementation, but still much work remains to be done
for practical implementation of this technology. The same
concept can be applied for the purpose of information
hiding. Assume, information can be hidden by just doing
any computation, and revealed by running it in reverse.

To design such a system requires the creation of a
universal, reversible Turing machine format. A standard
program running on any computer would be able to read in
a Turing machine and run it forward or backward. To
send a message, load the data in and run the machine until
it halts. The result would be the output and the waste
temporary data that must be retained in order to run the
machine in reverse.

At the receiver’s end, this info would be loaded into
the same universal Turing machine and run backwards to
recover the data. One problem with this scenario is that
any attacker could also possess the same universal,
reversible Turing machine and could intercept the message
and reverse it recovering the message. For the technique
to be useful, some data must be kept secret from the
attacker. This could be sent separately, independent of the
message.

If such a machine can be designed, then any
computation can be used to hide information in the final
outcome. This can hide as much information as needed
depending upon the calculation, e.g. to hide large amounts
of data, a network based interactive game program could
be used.

Journal of Independent Studies and Research (JISR) on Computing
Volume 6, Number1, January 2008

16

3. REVERSIBLE TURING MACHINE

If a Turing machine can be designed in a reversible
manner, then every possible machine is a candidate for
being converted into a vehicle for hiding information.
Some of them are more interesting than others, e.g.
computer programs that are quite simple and can only
respond with either success or failure. This is just one bit
of information, and it seems unlikely that anyone will be
able to hide much of anything in just that one bit. On the
other hand, programs that produce complex worlds of
game like “Need 4 Speed” spit out billions of bits, there is
ample room in the noise to hide the intended message; e.g.
the secret information could be encoded in the car track
data. The two parties communicating the message could
join the internet group game of “Need for Speed” and the
messages could come across the internet disguised as
instructions for where to draw the car on the screen. The
second version of “Need for Speed” could extract this.

This paper suggests a simple reversible Turing
machine based on the work of Charles Bennett [6]
demonstrating how to convert a simple non-reversible
Turing machine into a reversible machine by tweaking it;
so that, there is only one possible state that could lead to
another, this makes it possible to rewind the behavior.

3.1 Design of a Machine

This section focuses on the requirement to build a
reversible Turing equivalent machine that could perform
basic computation functions, but still be reversible. There
are numerous problems that need to be confronted in the
design of this machine.

It will get much of its performance by emulating the
Fredkin gate, which merely swaps information instead of
destroying it.

“Wasted bits” are by-products (such as the use of
temporary variables to hold intermediate values) produced
when a computation is performed. These waste bits need
to be sent to the recipient to enable computation in reverse.

There are various ways to send these bits to the
recipient, the most simple but least secure is to send the
bits through the same channel. A more secure way is to
send it through another channel encoded in the least
significant bits of an image or in an audio chat session, or
through some other covert channel.

3.1.1 Minimizing Extra State

All extra bits are transported through a separate
channel at the end. These should be kept to a minimum.
For this reason, all strings should be constant, and then the
final state of all strings would need to be communicated to
the recipient, and this would become too much overhead.

3.1.2 Arithmetic

Arithmetic is generally not reversible, e.g. 3+2 is not
reversible, but it is, if one component of the equation is
retained. Thus, adding the contents of register A1 and
register A2 and storing the result in register A1 is
reversible. The content of A2 can be subtracted from A1
to recover the original value of A2.

For most part, addition, subtraction, multiplication
and division are reversible; if they are expressed in this
format. The only problem is multiplication by zero. This
would not be allowable.

3.1.3 Structure of Memory

What form will be the memory take? Obviously,
ordinary computers allow a programmer to access and
move blocks of memory at a time. This is not feasible
because it would require that too many extra waste bits be
retained. Block move of data is not reversible, but
swapping of information is.

For that reason, there is simply an array of registers.
Each one holds one number that can be rounded off in
some case. The final state of the register will be shipped
as extra state to the recipient, so any programmer should
aim to use them sparingly. Unfortunately, the rules of
reversibility can make this difficult.

3.1.4 Conditional Statement

Most conditional statements that choose between
branches of a program can be reversed, but sometimes this
may not be so. Consider the case where “if x is less than
100 then add 1 to x; otherwise, add 1 to p” which path is to
be taken when running in reverse and x is 100? Should 1
be subtracted from p or not? Either case is valid.

One possibility is to execute each branch storing
results in temporary variables. When the conditional
statement is encountered, the proper choices can be
swapped into place.

The solution is to disallow the program from changing
the contents of those variables that were used to choose a
branch. This would rule out many standard-programming
idioms. The following is one way to work around the
problem:

if x < 100 then {
swap x,k;
k = k + 1}

else {
p = p + 1;
swap x, k+1; }

swap x,k;

Journal of Independent Studies and Research (JISR) on Computing
Volume 6, Number1, January 2008

17

3.1.5 Loops

Loops may be very handy devices for a programmer,
but can often lead to ambiguities when a program is run in
reverse. A straight forward example of this is the while
loop used to test for the last element in a string in C
programs, i.e. a counter moves down the string until the
termination character, a /0 character is found. It may be
easy to move backward up the string, but it is impossible
to know where to stop.

The problems with a loop can be eliminated if the
structure is better defined. It is not enough to simply give
a test condition for the end of the loop. The dependent
variable of the loop, its initial setting, and the test
condition has to be specified. When the loop is reversed,
it will run the contents of the loop until the dependent
variable reaches its initial setting.

This structure is often not strong enough. Consider
the loop:

i = 1;
j = I;
while (i < 2) do {

j = j + 0.01;
i = floor (j); }

The floor (x) function finds the largest integer less

than or equal to x. This function will execute 100 times
before it stops. If it is executed in reverse, then it will only
go through the loop twice before i is set to its initial value,
1. It is clear that i is the defining variable for the loop, but
it is clear that j has an important role.

There are two ways to resolve this problem, the first is
to warn programmers and hope that they will notice the
mistake before they use the code to send an important
message. This leaves some flexibility in their hands.

Another solution is to constrain the nature of loops
further. There is no reason why loops cannot be restricted
to “for loops” that apply a particular function to every
element in a list. Both are quite useful and easy to reverse
without conflicts.

4. STRENGTH ANALYSIS OF THIS MACHINE

The security of this machine lies in the program code.
A steganalyst may be able to reveal the message by
decoding, i.e. reverse engineering the program code.

The major security drawback in this technique is that,
anyone can design the same reversible Turing machine.
They could intercept the message and recover the
message. In order to avoid this problem, some part of data
must be kept separate, i.e. it must be transferred through
some separate covert channel, which should also be
encrypted.

The second solution might be to keep the structure of
the program secret and let it act as a key. Only the output
and extra waste bits will be transmitted to the recipient.
The adversary, who is trying to intercept the message,
cannot read it without the copy of the program that created
it. So, the strength of this scheme is in the ability to keep
adversaries from getting access to it.

How difficult would it be for an attacker to form the
structure of the program with these outputs? Obviously,
there are some programs that are quite easy to crack; e.g. a
program that copies the data to be hidden and spits it out,
would be easy to figure out. The output maintains the
structure of the document. A more complicated program
would be harder to crack. Eventually, there must be some
thing of complexity that is really extremely difficult to
crack. The major issue is; is there some measure such that
a program exceeding it could be considered completely
safe to use for the purpose?

REFERENCES

[1] R. Landauer & R.W. Keyes, IBM J. Res Develop. 14,

152 (1970), Investigate a specific model computer
whose energy dissipation per step is about kT.

[2] J. Von Neumann. Theory of Self-Reproducing

Automata, Univ. of Illinois Press, 1966.

[3] C. H. Bennett, "The Thermodynamics of Computation

-- A Review," International Journal of Theoretical
Physics, Vol. 21, no. 12, pp. 905-940, 1982.

[4] Edward Fredkin and Tommaso Toffoli “Conservative

Logic”, International Journal of Theoretical Physics
21 (1982), 219-253.

[5] Charles Bennett and Rolf Landauer. The fundamental

physical limits of computation. Scientific American,
pages 48-56, July 1985.

[6] C. H. Bennett, "Logical reversibility of computation,"

IBM Journal of Research and Development, Vol. 17,
no. 6, pp. 525-532, 1973.

