
Journal of Independent Studies and Research – Computing Volume 8 Number 2 July 2010 | 37

Object Oriented Database a Design Pattern

Talha Aziz1 and Naeem Janjua2

SZABIST Karachi

ABSTRACT:Object Oriented Database Management
Systems (OODBMS) differ from Relation Database
Management System (RDBMS) as data is stored as objects
instead of rows and columns of a table. Inherited objects
are stored with parents object’s attributed and methods
which has awful effects on memory and database as
hierarchy grows deep and objects become heavy. For
avoiding the heavy objects a pattern was discovered
recently named CHNFP (Class Hierarchy Normal Form
Pattern). It follows the concept of CHNF as well as it
validates the CK Metrics[1]. In this paper, we propose a
way to make it even more effective.

1. INTRODUCTION

Object oriented database, lack a standard for describing the
inheritance hierarchy of the classes schema [1]. With object
oriented techniques comes features such as polymorphism,
encapsulation, inheritance, and modularity. The CHNF
(class hierarchy of normal form), is a methodology for
implementing the normalization of classes’ schema
inheritance hierarchy. It is a good approach but the
difficulty occurs for the design when object oriented
databases become complex. Because when an object with
deep hierarchy tree loads into the memory, it becomes
heavy due to the depth in inheritance. The Object loads all
its super class attributes, properties and methods upto root
class. When this complex object goes into execution, it
causes data redundancy and results in memory wastage. It
would be effective if only required data is loaded into
memory at the time of loading of object instead of loading
duplicated data. Therefore it is better to split the object into
smaller objects and load the object on the grounds of
requirement. CHNFP pattern was discovered recently
which offers a methodology to maintain inherited objects
effectively in OODMS. Building upon it, we propose a
pattern to store inheritance relationship between parent and
child in such a way as to minimize data duplication and
thus making the CHNFP pattern even more efficient and
effective. Since the primary introduction of design patterns
in, they have been widely adopted by software industry.
Many software developers routinely apply design patterns
in their software systems to reuse expert design experience
and record design decisions. Several approaches on design
pattern discovery have been proposed in the literature.
Discovering the design patterns applied in a software
system may help on not only the understanding of the
system but also its maintenance and evolution [2]. Section
II presents the related work. Section III details.

2. RELATED WORK

The Class Hierarchy Normal Form (CHNF) normalizes the
class’s schema. The object oriented models, inheritance
semantics mainly expresses the class hierarchy. It is

important to ensure and maintain an appropriate class
hierarchy structure to fully express the inheritance
semantics. An improper class hierarchy structure will
function initially but, when a class’s schema evolution
occurs, an unreasonable structure that may cause loss of
information, confusions in semantics and storage anomalies
in implementation will appear [3].

The CHNF uses the concept of Boolean algebra for
defining the schema of class hierarchy and deal with
redundant class schema definitions so that a better class
schema with no such redundancy can be obtained [3].
The CHNF proposes the paradigm of normalize class
schema and the other hand we have another pattern for
mapping the objects with relational data base, the concept
of ORM (Object Relational Model) is a bridge between
Object Oriented and Relational Model. ORM is a
programming technique for converting data between
incompatible type systems in relational databases and
object-oriented programming languages. This creates, in
effect, a virtual object database which can be used from
within the programming language. [4].

ORM also have the concepts of Table per Class Hierarchy,
Table per Concrete Class, and Table per Class,
Relationships, and Factories [5].

ORM defines the class schema which bases on relational
databases, and the relational databases follow the
normalization. EF (Entity Framework) is an object
relational mapping (ORM) framework for the .NET
Framework. This framework is an ORM offering from
Microsoft for the .NET Framework. While Microsoft
provided objects to manage the Object relational
impedance mismatch [6]
.
It is difficult and probably incorrect to classify EF as an
ORM because it is far more advanced than that. EF strives
to accomplish something more sophisticated than your
standard ORM tool by embracing the conceptual model as
something concrete. EF accomplishes this by providing a
framework for creating an abstract model on top of your
relational model, hence overcoming the impedance
mismatch. The nucleus of EF is its layer of abstraction that
is divided into conceptual, mapping, and logical layers
making up the EDM. In addition, EF utilizes two APIs,
object services and the entity client, for working with the
EDM and also uses two data manipulation constructs,
Entity SQL (ESQL) and LINQ to Entities [5].
 Other less known proposals in which objectoriented
concepts are derived from structured development can also
be mentioned. Some of these methods were merely
extensions of structured development techniques. Masiero
and Germano and Hull et al. put together object-oriented
design with JSD, and the by-product of the design is

Journal of Independent Studies and Research – Computing

implemented in Ada. Bailin and Bulman combined
objectoriented development with Structured System
Analysis and the Entity-Relationship Model in an object
oriented requirements specification model. Lastly, Alabiso
and Ward combined object-oriented development with
Structured Analysis, Structured Design and the Entity
Relationship Model [7].

3. CHNFP

The CHNFP pattern discovered recently defines three basic
rules:
Rule one: Every Class has its interface.
Rule two: Every Sub-Class will implement its parent
interface.
Rule three: Every Sub-Class has no null constructor and
has constructor of at least one parameter of its parent id.

For example, we have a class Father with some attributes
and methods.

According to Rule One of the pattern, it should have an
interface iFather.

According to Rule Two of the pattern, every sub class
should implement its parent’s interface.

And the final rule makes it compulsory for the child class
to implement at least one non null constructor which binds
it to the parent’s object.

Computing Volume 8 Number 2

implemented in Ada. Bailin and Bulman combined
opment with Structured System

Relationship Model in an object-
oriented requirements specification model. Lastly, Alabiso

oriented development with
Structured Analysis, Structured Design and the Entity-

defines three basic

Class will implement its parent

Class has no null constructor and
has constructor of at least one parameter of its parent id.

example, we have a class Father with some attributes

of the pattern, it should have an

ry sub class

And the final rule makes it compulsory for the child class
to implement at least one non null constructor which binds

So, in a way, a virtual proxy has been implemented
than actual inheritance. When object of class
use Father class’ methods/properties, it can query the
Father’s object from the OODBMS by using proxy method
with something similar to as follows:

Son objSon
 = new Son(<< ParentID
getFatherObjectID >>);
objSon.Name; - > returns son’s name
objSon.Proxy.Name; - > returns son’s
father name.

The advantage of this pattern is that the
(Father)’s data is stored in a single object which is
referenced by all child (Son) objects. Where
an object of inherited class stored data physically in
OODBMS for attributes from all parent classes.
means that only one instance of the parent’s object is stored
in the database instead of it being store
object reducing the size of the database considerably. Also,
the parent object (it’s methods or attributes) are invoked
only when needed and thus making querying faster.

4. THE PATTERN

We have discovered an enhancement to the CHNFP
Pattern. Introducing a utility class which maintains the
relationship between parent and child facilitates in
eliminating the need to coerce the programmer to
implement a non null constructor pointing to the parent’s
object.

A. The Utility Class
The utility interface, say Util.Inheritance
inheritsFrom(object). Any class that needs to inherit a
parent class, implements this Util interface. When an object
is to be associated with a super / parent class, the
inheritsFrom() method is called and object id of the parent
is passed. Another method getParent()
parent’s object of the child if associated.

B. XML Repository
The relationship is maintained in an xml repository of the
following structure.

 July 2010 | 38

has been implemented rather
object of class Son needs to

methods/properties, it can query the
he OODBMS by using proxy method

with something similar to as follows:

<< ParentID /

> returns son’s name
> returns son’s

The advantage of this pattern is that the Parent Class
(Father)’s data is stored in a single object which is

all child (Son) objects. Whereas, in storing
an object of inherited class stored data physically in
OODBMS for attributes from all parent classes. This
means that only one instance of the parent’s object is stored
in the database instead of it being stored with each child
object reducing the size of the database considerably. Also,

(it’s methods or attributes) are invoked
only when needed and thus making querying faster.

We have discovered an enhancement to the CHNFP
ern. Introducing a utility class which maintains the

relationship between parent and child facilitates in
eliminating the need to coerce the programmer to
implement a non null constructor pointing to the parent’s

Util.Inheritance, contains the
. Any class that needs to inherit a

parent class, implements this Util interface. When an object
is to be associated with a super / parent class, the

method is called and object id of the parent
getParent() will return the

parent’s object of the child if associated.

The relationship is maintained in an xml repository of the

Journal of Independent Studies and Research – Computing Volume 8 Number 2 July 2010 | 39

<Util>
<Inheritance>
<parent objectid=’xxx’>
<child objected=’xxxx’/>
</parent>
</Inheritance>
</Util>

In this way, the logical data definition file maintaining the
relationship information between objects will be created.
Whenever a child needs to call any of the methods or
attributes of its parent, getParent() method of the
Util.Inheritance will be invoked.

e.g.

Say we have class Son with some methods and attributes.

Class Son
{
 attr1,
 attr2,
 attr3,
 method1(),
 method2()
};

And another class called Father

Class Father
{
 F_attr1,
 F_attr2,
 F_attr3,
 F_method1(),
 F_method2()
};

If this class is to be inherited from the class Father, the
programmer will make the relationship using the
inheritFrom() function of the Util.Inheritance interface.

Son s = new Son();
Father f = new Father();

s.inheritsFrom(f);

This would insert an entry into the XML repository as
follows:

<Util>
<Inheritance>
<parent objectid=’fatherobjectid’>
<child objected=’childobjectid’/>
</parent>
</Inheritance>
</Util>

Now, whenever there is a need to access parent’s methods
or attributes, it can be done with something similar to the
follows:

s.getParent().F_method1();

5. CONCLUSION

The discovered pattern is more efficient and effective than
the CHNFP because it is keeping the relationships in a
XML based logical file which is widely supported by
technologies. The use of objects is fast and the size of the
OODBMS is also reduced because only one instance of the
parent’s object is stored and is queries only when needed
and if invoked explicitly by the programmer.
The same XML structure can be used for future work on
enhancements of this pattern. For example, the same XML
hierarchy can be used to define constrains (or primary key)
on the data (object’s attribute), a feature currently missing
in OODBMS. An XML attribute can be added to the XML
structure to mention a primary key and with appropriate
methods of another class e.g. Util.Constraints can be
designed to enable such a feature.

<Util>
<Inheritance>
<parent objectid=’xxx’>
<child objected=’xxxx’ primary_key=’attr1’/>
</parent>
</Inheritance>
</Util>

Once a feature of defining constraints is enabled for
OODBMS as discussed above, further work to define
indexes on attributes can be undertaken and doors for faster
querying of objects can be opened.

6. REFERENCES

[1] A Pattern for the Effective Use of Object Oriented
Databases by Ubaid, M.; Atique, N.; Begum, S.; [IEEE
2009,
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=
5267187]

[2] Instantiating and detecting design patterns: putting bits
and pieces together Albin-Amiot, H.; Cointe, P.;
Gueheneuc, Y.-G.; Jussien, N. Automated Software
Engineering, 2001. (ASE 2001). Proceedings. 16th Annual
International Conference onVolume , Issue , 26-29 Nov.
2001 Page(s):166-173—Digital Object Identifier

[3] A Boolean Algebra Approach for Class Hierarchy
Normalization Advanced Database Research and
Development Series; Vol. 6, Proceedings of the Fifth
International Conference on Database Systems for
Advanced Applications (DASFAA) Pages: 203 – 312, Year
of Publication: 1997, ISBN:981-02-3107-5

Journal of Independent Studies and Research – Computing Volume 8 Number 2 July 2010 | 40

[4] http://en.wikipedia.org/wiki/Object-relational_mapping
Page visiting date: 15 February 2009 at 5:10 PM (PST).

[5] Pro LINQ Object Relational Mapping with C# 2008-
Copyright © 2008 by Vijay P. Mehta; ISBN-13
(electronic): 978-1-4202-0597-5 —Email:
info@apress.com, Available: http://www.apress.com.

[6]
http://en.wikipedia.org/wiki/ADO.NET_Entity_Framework
Page visiting date: 16 February 2009 at 1:35 AM (PST).

[7] A Brief History of the Object-Oriented Approach- Luiz
Fernando Capretz University of Western Ontario-
Department of Electrical & Computer Engineering -
London, ON, CANADA, N6G 1H1 Available:
lcapretz@acm.org

[8] Three example references from 1985 that use the term:
T. Atwood, "An Object-Oriented DBMS for Design
Support Applications," Proceedings of the IEEE
COMPINT 85, pp. 299-307, September 1985; N. Derrett,
W. Kent, and P. Lyngbaek, "Some Aspects of Operations
in an Object-Oriented Database," Database Engineering,
vol. 8, no. 4, IEEE Computer Society, December 1985; D.
Maier, A. Otis, and A. Purdy, "Object-Oriented Database
Development at Servio Logic," Database Engineering, vol.
18, no.4, December 1985.

[9] Kim, Won. Introduction to Object-Oriented Databases.
The MIT Press, 1990. ISBN 0-262-11124-1

[10] Bancilhon, Francois; Delobel,Claude; and Kanellakis,
Paris. Building an Object-Oriented Database System: The
Story of O2. Morgan Kaufmann Publishers, 1992. ISBN 1-
55860-169-4.

[11] Radding, Alan. (1995). So what the Hell is ODBMS?
Computerworld, 29(45), 121.

[12] Burleson, Donald. (1994). OODBMSs gaining MIS
ground but RDBMSs still own the road. Software
Magazine, 14(11), 63
[13] A new data abstraction layer required for OODBMS—
Eun-Sun Cho Sang-Yong Han Hyoung-Joo Kim—Dept. of
Comput. Sci., Seoul Nat. Uni.; Publication Date: 25-27
Aug 1997 ;On page(s): 144-148—ISBN: 0-8186-8114-4
;Digital Object Identifier: 10.1109/IDEAS.1997.625670—
Current Version Published: 2002-08-06

[14] Object-Oriented Database System Concepts and
Architectures Elisa Bertino University of Genoa Lorenzo
Martino—ISBN 0-201-62439-7 Pages – 14 to 16
[15]Patterns of Enterprise Application Architecture By
Martin Fowler, David Rice, Matthew Foemmel, Edward
Hieatt, Robert Mee,Randy Stafford ; Publisher: Addison
Wesley Pub Date: November 05, 2002 ; ISBN: 0-321-
12742-0 ; Pages: 560
[16]The Database Behind the Brains db4o | The Open
Source Object Database | Java and .NET By Rick Grehan |
2nd, Updated Edition | March 2006

[17] Cost-driven vertical class partitioning for methods in
object oriented databases Chi-Wai Fung1, Kamalakar
Karlapalem2, Qing Li3 Hong Kong, China; Edited by M.H.
Scholl. Received: March 29, 1999 / Accepted: March 11,
2002 Published online: April 3, 2003 –_c Springer-Verlag
2002 Available E-mail: itqli@cityu.edu.hk

[18] The Definitive Guide to db4o Copyright © 2006 by
Jim Paterson, Stefan Edlich, Henrik Hörning, Reidar
Hörning ISBN-13: 978-1-59059-656-2 , ISBN-10: 1-
59059-656-0 Email: info@apress.com, Available:
http://www.apress.com.
[19] Design Patterns as Language Constructs; Jan Bosch—
University of Karlskrona/Ronneby , Department of
Computer Science and Business Administration ,S-372 25
Ronneby, Sweden—E-mail: Jan.Bosch@ide.hkr.se
Available:http://www.pt.hk-r.se/~bosch

[20]http://en.wikipedia.org/wiki/Table_of_mathematical_s
ymbols—Page visiting date: 16 March 2009.

