
Journal of Independent Studies and Research – Computing Volume 8 Number 2 July 2010 | 41

Study and Evaluation of Cluster Technologies
(OpenMosix vs. MPI)

M Kashif Ghafoor1 and Asim Riaz2

SZABIST
Karachi, Pakistan

ABSTRACT: Most of the time computers in any
organization are not consuming the resources and are idle.
Unfortunately, when one requires those computing/CPU
powers, the requirement is in bulk and at once. The idea
behind clustering is to spread these loads/processes among
all available idle computers, using the resources that are
free on other machines. Two different clustering paradigms
are available for implementation of cluster by any
organization. Process migration and message passing are
two different techniques used in making clusters.

This IS covers the study and evaluation of cluster

technologies for implementation in a government sector.
Comparison of these technologies will provide the basis for
choosing the most suitable technology for the organization.

Key Words: Cluster computer, parallel processing,
Process migration, Message passing.

1. INTRODUCTION

In recent years, interest in high performance
computing has increased [7] [10]. With the advent of new
technology, the unused resources of computer can now be
utilized simultaneously through cluster to achieve the
results in quick and less time. Clustering is the technology
by which number of computers in the network takes part to
solve a big problem through distributing the jobs to other
computers. Clusters are mainly used where tremendous
amount of processing power is required to solve the heavy
problems. Major tasks supported by the cluster tools
consist of shorten installation process, provides system
wide monitoring, support migration, etc [2].

Cluster computing has been used for many years as

the primary computational platform for scientific applications
[1]. Now scalable computing cluster, ranging from cluster
of homogenous servers to a heterogeneous network of
workstation, are rapidly becoming the standard platform for
executing demanding applications, high performance and
interactive computing. Two models that are used to achieve
these goals are process migration and message passing [12]
[13].

Process migration model is a technique in which a
live process is transferred from one system to another.
Mosix/OpenMosix is an example of this technique [14].
Message passing model is implemented in user space as a
group of libraries. Application developers write their code
according to set of standards. Message Passing Interface

(MPI) and Parallel Virtual Machine (PVM) are two
example of this technique [11].

Here in this paper, I will study and evaluate both

high performance clustering techniques and will compare
their performance with some experiments, focusing on the
common goal of finding the best cluster paradigm for the
organization.

2. ORGANIZATIONAL ENVIRONMENT

 The setup of our organization is widely spread
across the country. Five Unix servers are installed at
different locations in Pakistan. These servers provide
different application services ranging from inventory
management to the simulation programs.

 The servers at night need a lot of extra
computational power to keep the system online besides
taking backup of the system on tape libraries. Besides other
routine activity, the system must be kept online for any
transactions to meet the requirement of end user.
Furthermore in some servers a lot of programs also run
consuming bunch of computer resources resulting in time
wastage. To provide access to every user at that part of
time, whether for administering a database or updating the
application or taking backup, the system available should
be quite efficient and capable to deal with the entire task in
lesser time utilizing all the idle resources.

3. OPENMOSIX

OpenMosix is a free cluster management system
that provided single-system image (SSI) capabilities [6]. It
is an extension to the kernel of the operating system, which
turns the ordinary computers in the network into the cluster
[5]. OpenMosix doesn’t require additional programming to
balance the load on computers, and computers can leave or
join the cluster without any disruption. Every application
automatically and transparently benefits from distributed
computing concept. It allows the program processes to
migrate to the less utilized nodes, thus automatically
balancing the load on the computers.

3.1 OpenMosix Composition

OpenMosix has no central control or master/slave
relationship between nodes. Each node operates as an
autonomous system and makes all its decisions
independently. This allows a dynamic configuration, where

Journal of Independent Studies and Research – Computing Volume 8 Number 2 July 2010 | 42

nodes may join or leave the network with minimal
disruptions.

3.2 Advantages/Disadvantages of OpenMosix

Although MPI is the current technology, but the old
technology openMosix is still popular among the cluster
users. The openMosix provides following advantages [4]:

1. No requirement of any special library to distribute

the processes in cluster.
2. Processes will be distributed over the cluster as

soon as a node has less load comparing to other
nodes and thus reduces the load on the server.

3. OpenMosix runs on any Linux flavor after
applying kernel patch.

4. OpenMosix makes it possible to create a cluster
out of old hardware.

Due to its old technology, openMosix has

following disadvantages [4]:

1. The openMosix does not provide any security.
2. If a node is not reachable, the server will crash

resulting completely restarting your cluster and
loosing the work.

3. Jobs that have failed cannot be reassigned to the
cluster and considered as lost.

4. The cluster’s performance does not grow much
anymore after connecting six nodes.

4. MESSAGE PASSING INTERFACE (MPI)

MPI is a standard for message-passing for
distributed-memory applications used in parallel
computing. It is a portable, efficient and flexible standard
library for writing parallel programs [17].

4.1 MPI Composition

MPI clusters are scalable HPC clusters based on

commodity hardware, on a private network, with open
source software infrastructure [3]. MPI clusters usually
operate on master/slave concept. The main program is
started on the master who starts a bunch of worker-tasks on
the remote nodes. All the management of jobs is centrally
handled from the master node [18].

MPI works on MPSD (multiple program single
data) execution model. The programs task running on each
node synchronizing variables and exchanging data by e.g.
broadcasting + gathering. The sub-results are combined
afterwards when each program task computes its part of the
data [15].

4.2 Advantages/Disadvantages of MPI
MPI came into the mainstream more recently than other
message passing paradigms (e.g., PVM). It has become
popular because of the following features [9]:

1. MPI provides a high degree of portability.

2. MPI library transparently performs the appropriate
data conversion when data are transfer between
different heterogeneous systems.

3. MPI standards are flexible.
4. MPI is widely supported by most of the vendors

of parallel systems.

The disadvantages of MPI are:

1. Need to have expertise level for writing efficient
parallel program.

2. You need to write complex parallel program by
using MPI libraries.

5. EVALUATION

5.1 Computer Experiment One

The cluster is made of four computers, one P-III
of 800 MHz and 03 P-II of 400 MHz. All the computers are
having 256 MB of RAM and are connected with 100 Mb
networks. A small database with two datafiles of different
capacity is built on each computer (two of 2 GB, two of
1.5, two of 1 and two of 0.5) for the purpose of test by
varying file sizes.

The copy process would be executed simultaneously with
and without the simulation to check the results [8].

5.1.1 Tests With Simulation

5.1.1.1 without OpenMosix

P-III recorded the I/O of about 30m per GB,
resulting in total time of about 5h (300m). And P-II
recorded the I/O of about 20m, resulting in total time of 3h
20m (200m). The result obtained with this experiment
shows that each process has copied only its data. Hence it’s
not the parallelism but simultaneity of events [8].

5.1.1.2 With OpenMosix

Firstly the copy program was executed without
simulation only to check the adaptive resource algorithm of
openMosix. It was noted that processes migration from P-II
to P-III node was working fine.

Subsequently the experiment was repeated with
simulation on P-III node. And effective load balancing was
observed. But additional load on P-II node degraded its
performance and the copy time recorded was 25 – 30
minutes per GB [8]. Comparison for two of the above
experiments is depicted in table 1.

 Without
openMosix

With openMosix

P-II total time / node 3h 20m 4h 30m
P-III total time 5h 4h
Balancing Small good

Table 1[8]

Journal of Independent Studies and Research – Computing Volume 8 Number 2 July 2010 | 43

5.1.1.3 Using MPI
MPI requires extra work of program coding for

parallelization. The tests were conducted using 1, 2 and 4
processes for each datafiles. Using MPI, P-II nodes
recorded the copy times of 13 – 16 minutes and P-III
recorded with 16 – 17 minutes.

 Without
openMosix

With
openMosix

Using MPI

P-II total time per
node

3h 20m 4h 30m 2h 30m

P-III total time 5h 4h 2h 50m
Balancing Small good sufficient

Table 2 [8]

5.1.2 Test Without Simulation

To get clearer picture between MPI and
openMosix, the copy test was executed without any
simulation. The test was executed thrice with a datafiles set
of 8 GB on each node, 20 files of 0.4 GB, 8 of 1 GB, 6 of
1.4 GB and 4 of 2 GB respectively.

Fig 1[8]: Blue dashed line shows result of openMosix and

red continuous line shows MPI.

Though the load balancing performed by

openMosix is correct and good, but MPI technology takes a
lead with its multiprocess programming [8].

5.2 Computer Experiment Two
 The aim of this experiment was to check the
efficiency of parallel runs and serial execution within their
domain. The experiment was performed on two different
clusters. P-III cluster with FE network consists of 16 CPUs
(1.4 GHz) with total RAM of 16 GB. P-IV cluster with
Myrinet also consists of 16 CPUs (2.2 GHz), but with total
RAM of 08 GB [16].

5.2.1 Serial Execution on OpenMosix & Parallel on
MPI

The task of 20 different simulations was executed
on P-III cluster with FE network and P-IV based clusters
with Myrinet network. Results collected from different
experiments are enumerated in table 3.

P-III MPI

(4 CPUs)
MPI

(8 CPUs)
openMosix

Total Time
Avg. Time

1013
193.4

1138
142.5

894
687.5

P-IV MPI
(4 CPU UP)

MPI
(4 CPU SMP)

openMosix

Total Time
Avg. Time

1432
139.4

2082
206.3

1066
844

Total Time refers to Total execution time which is from the start of job
execution to the job ending.
Avg. Time is the average simulation time of 20 simulations.

Table 3 [16]

It is clearly evident that openMosix technology is
superior for this type of job. Although the total time for P-
IV based MPI cluster is higher than P-III cluster which
further go high as the number of processors increases. But
the cluster also benefits from Myrinet network technology
and average time for P-IV based MPI cluster decreases as
compared to P-III cluster with Fast Ethernet [16].

5.2.2 Parallel Execution on Both OpenMosix & MPI
 The goal of this experiment was to test the results
obtained through running parallel program with and
without openMosix technology.

Lattice Size openMosix MPI
4x4x4x4
8x8x8x8
12x12x12x12

5.3
17.2
101

5.6
17.6
126

Table 4 [16]: times are in seconds

 Job with a smaller lattice size doesn’t make much
of a difference in the results. But as the lattice size grows
the difference in time is remarkable, thus clearly indicating
the openMosix technology to be superior.

6. CONCLUSION

These fundamental differences between the main
structures of the two technologies provide advantage to one
over the other. A great advantage of openMosix clusters
comparing to MPI is that no special codes are required to
be written to take the taste of implementing clusters.

MPI programming is quite complex. These can
only be used in small dedicated communities i.e., research
& development, space etc. We can conclude that the MPI
cluster may be a little too complicated due to its special
needs. And with openMosix the user does not need to
worry about the program structure. Its simple ability of
patching with kernel of operating system made it popular
among the users. Moreover, it can be built from already
available normal computer (PCs) within the organization.

7. REFERENCES
1. P Anedda, M Gaggero, G Busonera, O
Schiaratura, G Zanetti. Flexible Clusters for High-
Performance Computing, IEEE, 2010.

2. S Prueksaaroon, V Varavithya, S Vannarat. An
Implementation of Virtualization Cluster: Extending
Beowulf Cluster using Virtualization Cluster Management
and Image Storage, IEEE, 2009.

Journal of Independent Studies and Research – Computing Volume 8 Number 2 July 2010 | 44

3. Beowulf Project Overview, Beowulf Cluster Site,
http://www.beowulf.org/overview/index.html, 2007.

4.Michels, W. Borremans, Clustering with openMosix,
http://staff.science.uva.nl/~delaat/snb-2004-
2005/p20/report.pdf, University of Amsterdam, 2005.

5. OpenMosix: An open source Linux Cluster Project,
URL: http://www.openmosix.sourceforge.net, June 2004.

6. R Lottiaux, C Morin, G valle, P Gallard, D Margery, J Y
Berthou, I Scherson, Kerrighed and data parallelism:
Cluster computing on single system image operating
systems. In Proceedings of Cluster 2004 – IEEE, Sep 2004.

7. A Boklund, C Jiresjo, and S Mankefors, The Story
Behind Midnight; A Part Time High Performance Cluster,
in proceedings of International Conference on Parallel and
Distributed Processing Techniques and Applications, USA,
Vol. 1, pp. 173-178, June 2003.

8. G Argentini, Workshop Linux cluster: the openMosix
approach: Use of openMosix for parallel I/O balancing on
storage in Linux cluster, Nov 2002.

9. Introduction and Advantage of
MPI,
http://www.ncsa.illinois.edu/UserInfo/Resources/Hardware
/CommonDoc/MessPass/MPIIntro.html, Dec 2002.

10, Rajkumar Buyya, A Study on HPC Systems
supporting Single System Image, Techniques and
Applications, in Proceeding of the International Conference
on Parallel and Distributed Processing Techniques and
Applications, USA, 1997.

11. Blaise Barney, Message Passing Overview:
Parallel Programming Workshop, URL:
http://www.hku.hk/cc/sp2/workshop/html/message_passing
/message_passing.html#message1, Jul 1996.

12. E T Roush and R H Campbell, Fast Dynamic
Process Migration, in Proceedings of the 16th International
Conference on Distributed Computing Systems, IEEE, pp.
637-645, 1996.

13 Y Paindaveine and D S Milojicic, Process vs.
Task Migration, in Proceedings of 29th Hawaii
International Conference on System Sciences, Software
Technology and Architecture, Maui Hawaii, vol. 1, pp.
636-645, 1996.

14. F Douglis, Experience with Process Migration in
Sprite, in proceedings of Workshop on Experience with
Building Distributed and Multiprocessor Systems, Fort
Lauederdale, FL, pp. 59-72, October 1989.

15. H J Sips, Programming Languages for High
Performance Computers. URL:
http://cdsweb.cern.ch/record/400331/files/p229.pdf.

16. Moshe Bar, S Cozzini, M Davini, A Marmodoro,
OpenMosix vs. Beowulf: a case study,
URL:http://www.democritos.it/activities/IT-
MC/openMosix_vs_Beowulf.pdf.

17. Web site for MPI libraries, High Performance and
widely portable MPI,
http://www.mcs.anl.gov/research/projects/mpich2/

18. Web site for parallel programming for MPI,
http://www.mhpcc.edu/trainingworkshop/mpi/MAIN.html#
Message_Passing.

