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Abstract: - In [1] it was shown that using orthogonal array 
as input to neural network for estimation of laser cutting is 
not a good approach while incorporating the Levenberg 
Marquardt training algorithm, furthermore it was argued 
that Levenberg Marquardt is the best training algorithm for 
the problem of laser cutting. But theoretically speaking 
Gradient descent with momentum, Quasi Newton and 
Levenberg Marquardt, all have a probability of finding the 
global minima in the error space. The probability can be 
higher for one and lesser for another but there is a 
probability none the less. In research done for this paper an 
exhaustive search was performed, a search in the 
“structure” and training algorithms so as to look at the idea 
objectively. It is hypothesized that may be, even if the 
gradient descent is given the “right” momentum and a 
“good” learning rate than it can find the actual global 
minima and thus a pattern might become recognizable in the 
error space which maps this language into quantification. 
 
INTRODUCTION 

Laser Cutting is a process by which material is cut using 
high amplified light. The process has four variables; the 
speed at which the laser moves, the power of the laser, the 
standoff distance and the gas pressure. The material being 
cut is Perspex sheet.  In this paper about laser cutting an 
experiment will be conducted. The experiment will be 
controlled as that will lead to a larger domain of 
observational characteristics. Here the data used for the 
experiment is the same which has been used in [1]. A design 
will be used in order to come to a correct formulation.  For 
the purpose of systematic design factorial design was 
selected. The idea behind factorial design is that the process 
being studied has discrete factors playing a role in the 
manipulation of its outcome so we change the factors in a 
way that we can understand the role of each factor 
individually as well as collectively. After getting data in the 
form of factorial design, Taguchi method was applied on the 
data. This  generalizes the variable values, Applying 
Taguchi method gives us an orthogonal array which is also 
saturated, thus giving us the outcome mentioned above, but 
it is not at all as good as it sounds[2], it has been proposed 
that the experiment design which is sequential in nature has 
greater efficiency and accuracy.  But the use of Factorial 
design and the Taguchi method was the choice in [1] and 
since the primary purpose of this paper is to study the 
different algorithms available for training neural networks, 
selection criteria for experiment design lies outside the 
boundaries of this paper. The reason for not using statistical 
design has been  

already been shown in [3]  that nonlinear regression model 
is not sufficient for solving this problem, as a matter of fact 
it was shown that average error reaches 50% which is a huge 
error. That is why neural network approach was adopted as 
was the case in [1] by Mustafa. What makes this study 
different from that will be discussed in the discussion part of 
this report. Before going into the details of neural networks 
first a brief introduction is necessary in order to grasp the 
concept in this paper in its totality. 
 
ARTIFICIAL NEURAL NETWORKS 
 
The motivation behind artificial neural network as a model 
for computation lies in the work of Hebb (1949). It was 
observed that humans have been performing computations 
as long as they have existed. The system which we have in 
our brains is a massively parallel system through which we 
can perform very complicated tasks. Ever since the 
beginning of computers they were used to perform tasks that 
required computation which are algebraic in nature i.e. tasks 
that can be broken down to addition and subtraction. But 
there are certain tasks which we as humans perform 
exponentially better than computers e.g. recognizing a face, 
from thousands of faces we know we can recognize which 
face belongs to which person in a fraction of seconds. 

Some salient features of Artificial Neural Networks are 
non-linearity, input output mapping, ability to adapt to 
environment, evidential response, and fault tolerance, 
analogous to neurobiological systems. Below is a diagram of 
a neural network in a human, 
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The synaptic input connections in a human are strong and 
weak. These connections are adjusted so that we become 
better able to predict desired outputs. Analogous to this 
system the following electronic model of computation can 
be abstracted. 

 

The variables denoted by x are the inputs and the variables 
denoted by w are the synaptic connection strengths. These 
weights are the free parameters which are adjusted to get the 
desired output. This model of computation can be used to 
perform regression analysis as will be explained below. 

In regression Analysis we have some data and we wish to 
find out the slope of the line which is closest to all the data 
because this line best explains the relationship between the 
input and the output. Now we know that the slope intercept 
form of a line is: 

y=mx + b                                     
(1) 

Here m is the slope, x the input and b is a constant. In the 
above picture of artificial neuron the line that has no label 
and is going in the summer neuron is the constant input. It is 
usually termed as the bias. In this ANN analogy the weights 
are the slopes, the bias is the constant input to the neuron 
and the inputs are the independent variables. A neuron with 
one weight W1, one input x1 and one constant input b and 
output y could be written as y=W1x1+b. The error is 
calculated as: 

Error = target – output                              
(2) 

In case of many input values and output values that are 
known we sum up the squared error of all known input 
output mappings in the following formula: 

              
(3) 

This formula gives the error of one weight configuration 
with respect to all provided mappings between inputs and 

outputs, thus performing a regression. And on the basis of 
this we change weights and then try it again to see whether 
error is lesser or greater and we follow the procedure  

iteratively. This gives us an error surface, e.g. consider a 
neural network with two weights w1 and w2 and consider 
the following example surface 

 

The main purpose is to set the weights such that E becomes 
minimum. Usually a surface is not as simple as shown above 
e.g. 

 

DISCUSSION ABOUT TRAINING ALGORITHMS 
USED 

For the purpose of training neural networks three 
algorithms were selected namely, gradient descent with 
momentum, Quasi Newton and Levenberg Marquardt. Only 
Levenberg Marquardt was used in Mustafa [1] but it was 
seen here that all have a probability of converging towards 
the global minima so all were considered. 9000 neural 
networks were initialized, 3000 each for gradient descent 
with momentum, Quasi Newton and Levenberg Marquardt. 
In case of gradient descent with momentum one 
configuration had 10 instances each while in the case of 
Levenberg Marquardt and Quasi Newton each configuration 
had 600 instances of separate configurations. 

The Back Propagation Algorithm 

The back propagation algorithm is simply an algorithm 
which changes weights on the basis of previously calculated 
mean squared error. The algorithm is iterative in nature and 
can be expressed in the form of a pseudo code as follows: 
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• first randomly or by some other means initialize the 
weights 

• get the output from the network with these weights 
 

• calculate error by subtracting output from known 
input output mapping 

• compute new weights or delta ws from output layer 
to hidden layers 

• compute for all successive layers to input layer 
• change the old weights with the new weights 
• repeat from step 2 until network converges to 

desired error 

The Gradient Descent Algorithm 

In this algorithm weights are adjusted by using the 
following simple rule 

          
(4) 

new weight for i= learning rate*(desired result - actual 
result)*input i 

This algorithm is very slow and it requires the user to give 
the learning rate. If the learning rate is too high the result 
has a high probability of being erroneous for global minima 
might have already passed. If the learning rate is too small 
then it works very slowly. It is also called steepest descent. 
The gradient descent algorithm often gets stuck in local 
minima. 

The Gradient Descent With Momentum 

As its name implies this algorithm adds a momentum term 
to the gradient descent algorithm so that it does not get stuck 
in a local minima. Gradient descent with momentum is a 
good algorithm as is proposed in [4]; still it depends on the 
user to tell it what the momentum term should be none the 
less it has a probability of finding the global minima but that 
probability seems lesser than Quasi Newton and Levenberg 
Marquardt. A mathematical representation would be: 

new weight for i= learning rate*(desired result - actual 
result)*input i + Momentum*previous weight…(equation(5) 

The Quasi Newton Algorithm 

The point at which the derivative of a function is zero is 
called the stationary point of that particular function. This 
point is a value which is given as input to the function. Isaac 
Newton proposed a mathematical method to locate the 
stationary point on a function. The Quasi Newton Algorithm 
has its origins in that function. Isaac Newton made an 
assumption in this method and that assumption is that the 
area around the optimum can be approximated to be 
quadratic in nature. The advantage of the Quasi Newton 
method is that it does not require the computation of second 

derivate Hessian Matrix; instead one after another gradient 
vectors are analyzed and used to update the Hessian Matrix. 
The Quasi Newton is another option in case one has to use 
the conjugate gradient optimization. But usually in the 
domain of neural networks this algorithm is used when 
training is of small networks [1]. Secondly it must be noted 
that this algorithm requires a line which it uses to find the 
direction in which it starts the descent, once that is set it 
goes into the depth of that line. How this line is selected was 
not settled in this independent study, for the purpose of 
experiments conducted in this paper the default line function 
for Quasi Newton GDSM was used which is srchcha. The 
Quasi Newton Algorithm can be written mathematically as: 

Change in weight= previous weight - (previous Hessian * 
previous gradient)….equation                                       (6) 

Levenberg Marquardt Algorithm 

The beauty of Levenberg Marquardt is that it does not 
require the solution of second order derivative matrix i.e. the 
Hessian Matrix. Given mean squared error as the 
performance criteria, Hessian Matrix becomes 

H= transpose (J) * J                               (7) 

Where J is a Jacobian matrix i.e. a matrix with all first order 
partial derivatives. The partial derivatives are: 

                       (8) 

The reason because of which partial derivative is needed is 
that the error is partially dependent on many variables. Here 
is the equation is clear, we are taking partial change in error 
with respect to weights and biases. The gradient g is 
calculated as: 

g= transpose (Jacobian)*e                                                  (9) 

Where e is a symbolic representation of vector 
consisting of errors in the network. Now that the basics are 
known, the Levenberg Marquardt algorithm can be 
expressed as: 

Change in weight=previous weight - [transpose (J)*J + µI]-¹ 
* transpose (J)*e          (10) 

The genius lies in the µ symbol, for when it becomes 0 the 
equation becomes a Quasi Newton equation, and when this 
quantity becomes too large the equation represents a simple 
gradient descent with momentum. This can be explained 
very easily, all this equation is saying is that when the 
algorithm reaches towards a minima it starts to act like a 
Quasi Newton equation so that it does not get stuck in a 
local minima and when it is away from a minima it acts like 
a normal gradient descent with momentum. According to [1] 
the LM algorithm is very suitable for training medium sized 
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datasets. The only drawback lies in the large memory which 
it requires, but since our requirement is not to find 
relationships between the laser cutting variables at real time, 
this algorithm is very suitable. 

METHODOLOGY USED TO REACH SOLUTION 

The Laser cutting process which is to be optimized consists 
of 4 controllable input variables: 

• Laser Power in watts 
• Cutting Speed in meters/minute 
• Assist Gas Pressure in Bars 
• Standoff Distance in millimeter 

The outputs which are to be found out on the basis of 
these controllable variables are: 

• Mean Edge Quality 
• Signal to Noise Ratio 

Both have to do with the edge quality of the material that 
has been cut. For the purpose of optimization in this paper 
no new experiments were conducted on laser cutting 
machine, simply the orthogonal array used in [1] was used 
as it is a generalization of the factorial design. The data 
provided for the experiment was in the following form: 

Run Laser 

Power 

(watt) 

Cutting 

Speed 

(m/min) 

Assist 

Gas 

Pressure 

(bars) 

Stand 

Off 

Distance 

(mm) 

Mean 

Edge 

Quality 

Signal 

to Noise 

Ratio  

1 100 0.2 0.5 1 0.1467 16.6666 

2 100 0.2 2.5 5 0.0700 23.0980 

3 100 1.2 4.5 10 0.0000 0.0000 

4 300 0.2 2.5 10 0.0500 26.0206 

5 300 0.7 4.5 1 0.2200 13.1515 

6 300 1.2 0.5 5 0.0800 21.9382 

7 500 0.2 4.5 5 0.1200 18.4164 

8 500 0.7 0.5 10 0.1400 17.0115 

9 500 1.2 2.5 1 0.1100 19.1721 

 
Table 1: Inputs output mappings for training 
 

The process of the experiment conducted in this paper can 
be represented easily by the following flow chart: 

 
 

ANALYSIS 

Following the above procedure a total of 9000 neural 
networks were made, 3000 for each algorithm. The table in 
Appendix A shows the best 1997 neural networks whose 
MSE is lesser than the MSE achieved in [1]. It concluded 
with the remark that early stopping leads to more 
generalization, here it was done through built in mechanisms 
in Matlab and this remark was confirmed. The conclusion 
ended with the creation of a neural network with Max % 
error of 25 and an average percent error of 10 and this lead 
to the hypothesis that training on the basis of Orthogonal 
Array is not sufficient, but in the same thesis only eight of 
the array values were taken for training. In the experiment 
conducted in this independent study all nine values were 
used for training and the results were dramatic. The best 
neural networks achieved were of the following 
configuration and output values. 
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A B C D E F G H I 

2.725 9E-04 5.45 0.002 0.131 0.301 11.7 0.034 1.32 

3.428 9E-04 6.86 0.047 4.834 0.564 7.06 0.068 1.32 

2.602 6E-04 5.2 0.057 3.601 8.341 7.69 0.933 1.25 

4.652 0.003 9.3 0.032 2.555 0.418 11.8 0.05 1.6 

1.57 0.002 3.14 0.005 0.961 12.52 10.3 1.391 1.26 

0.753 0.002 1.5 0.032 3.573 10.94 17 1.22 2.28 

2.339 7E-04 4.68 0.002 3.802 0.536 27.8 0.06 3.51 

1.723 0.002 3.45 0.151 0.033 10.84 23.1 1.221 2.57 

4.236 6E-04 8.47 0.012 1.384 4.887 23.3 0.544 2.74 

1.375 0.001 2.75 0.032 0.899 1.77 49 0.2 5.55 

 

Table 2: Error Values 

The sequence represents the rank which a particular network 
was given. It was given by taking the average of all error 
checking parameters used in the above table. 
The Best Artificial Neural Network with respect to training 
algorithms was: 

 
Algo A B C D E F G H I 

Best 

gdm 

1.58 0.02 3.1 0.093 2.27 3.362 65.1 0.38 7.48 

Best 

QN 

2.66 0.04 5.3 0.323 1.09 67.17 2.93 7.5 0.45 

Best 

LM 

2.73 0 5.4 0.002 0.13 0.301 11.7 0.03 1.32 

Table 3: Best Outputs with respect to training algorithms 

In the above table the columns represent the following 
variables: 

A MSE 

B MSE mean Edge Quality 

C MSE signal To noise ratio 

D min % error of mean edge quality  

E min % error of signal to noise ratio 

F max% error of mean edge quality 

G max% error of signal to noise ratio 

H average % error of mean edge quality 

I average % error of signal to noise ratio 

Table 4: Explanation of Error Values 

The values selected for network structures:  

number of neurons [2 4 6 8 10] 

epochs [500 1000] 

training algorithms  [traingdm trainbfg trainlm] 

performance 
function  

[mse] 

learning rate in case 
of gdm 

[0.001 0.003 0.005 0.007 
0.009] 

momentum used in 
case of gdm 

[0.1 0.3 0.5 0.6 0.7 0.8] 

Table 5: Network Attributes 

As it can be seen, out of the best ten neural networks only a 
few have performed lesser than the neural network proposed 
in [1]. Secondly all the best neural networks are those which 
used Levenberg Marquardt algorithm, the interesting fact is 
that the number of neurons in the best was in the following 
order: 

best  lm with 4 neurons 

2nd  lm with 8 neurons 

3rd  lm with 10 neurons 

4th  lm with 10 neurons 

5th  lm with 10 neurons 

6th  lm with 6 neurons 

7th  lm with 8 neurons 

8th  lm with 8 neurons 

9th  lm with 4 neurons 

10th  lm with 10 neurons 

               Table 6: Best Networks 

There were 600 neurons of each structure of different 
number of neurons. 4/600 were of 10 neurons, 3/600 were of 
8 neurons, 1/600 of 6 neurons and 2/600 of 4 neurons. Thus 
even though the best network was of 4 neurons, the ones 
with 10 had a higher probability of being optimized 
networks. So the experiment suggests that Levenberg 
Marquardt is the best algorithm, and applying exhaustive 
search gave a good optimized network. The entity which 
played the greatest role in finding the global minima it 
seems is the random weight initialization, which leads to 
more surface traversal in the error space, therefore 
confirming the thought that no sound mathematical principle 
is there to design neural networks. 

Another very interesting observation which was made was 
that out of the best 1997 neural networks which were 
created the distribution with respect to training algorithms 
was as follows, 

Training Algorithm Network 
Quantity 

Gradient Descent with momentum 334 

Quasi Newton BFGS 862 

Levenberg Marquardt 801 

 Table 7: Best Networks with respect to training algorithms  

The Networks with Gradient Descent with momentum had 
the following properties: 
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neurons 2 4 6 8 10 

quantity 32 75 87 72 68 

epochs 500 1000 

quantity 177 157 

learning 
rate 

0.001 0.003 0.005 0.007 0.009 

quantity 68 76 82 63 45 

momentum 0.1 0.3 0.5 0.6 0.7 0.8 

quantity 56 77 73 49 63 16 

Table 8: Gradient Descent network attributes 

For Gradient descent with momentum, the following 
deductions were made by inferring from this data 

• Neurons should be between 4 and 8 
• Epochs should be a little below 1000 
• Learning rate should be between 0.003 and 0.006 
• Momentum should be between 0.3 and 0.5 

From Quasi Newton Algorithm, following data was 
extracted regarding the optimum number of neurons 
required to solve this problem 

neurons  2 4 6 8 10 

quantity 145 201 208 147 161 

Table 9: Neuron quantity in networks with Quasi Newton 
training 

This suggests that number of neurons should be somewhere 
between 4 and 7 

neurons 2 4 6 8 10 

quantity 115 187 195 168 136 

Table 10: Neuron quantity in networks with Levenberg 
Marquardt training 

Table 10 also suggests that number of neurons should be 
somewhere between 4 and 7. 

 

The attributes which were kept constant in all neural 
networks are as follows: 

1. Type of neural network used:- Feed Forward 
Network 

2. Method used to check performance:- Mean 
Squared error 

3. Transfer Function at hidden Layer:- Tan Sigmoid 
4. Transfer Function at output layer:- Pure linear 
5. Number of Layers:- One  

The sole purpose of keeping these entities constant is that if 
we do not do that the exhaustive search will become too 
large and analyzing data would become very hard, thus 
making the problem at hand far more complex than it 
already is. 

CONCLUSION 

On the basis of the experiment conducted to reach a 
conclusion about the value of the three training algorithms, 
it is clear that Levenberg Marquardt is the best choice but 
there are certain things which the other two algorithms 
which might prove to be of great value. As was mentioned 
in the beginning, the Quasi Newton algorithm used to train 
the neural network in this experiment was assigned the 
default line search i.e. Charalambous line search, which 
searched in a given direction, maybe if given a different line 
search technique this method would perform better for after 
all in the trained set the number of Quasi Newton networks 
was greater than LM networks. The Gradient Descent with 
Momentum cannot be ignored for even though its values 
were not that promising, the data which was received after 
an exhaustive search explained a lot about the error surface, 
it seems that to optimize a given neural network or to find 
out an area in the error surface from where we should start, 
this would prove to be a good algorithm. Even though the 
data suggests that the optimum number of neurons lie 
between 4 and 7, the best neural network for QN and GDM 
had 10 neurons, while the ANN which incorporated LM had 
4 neurons (the top 10 networks in LM class had more 10 
neuron structures). Secondly a particular configuration in 
GDM had only 10 weight initializations, may be if given 
more initializations with the structure, which its data 
supports, it too can perform well. 

POSSIBLE DIRECTIONS FOR FUTURE 

The Levenberg Marquardt algorithm can also be used using 
a variant proposed in [7]. An Adaptive minimization 
algorithm can also be implemented so that terms which 
increase more slowly have a better chance of optimization 
[8]. Swarm Intelligence [9] or some other optimization 
technique like genetic algorithm can also be implemented. 
An intelligent system can be built which modifies on the 
basis of different input configurations of GDM algorithm. 
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