
Reflector – A Dynamic Manifestation of Turing
Machines with Time and Space Complexity Analysis

Behroz Mirza

MS Computing,

Shaheed Zulfikar Ali Bhutto Institute of Science and
Technology

90 and 100 Clifton

Karachi -75600

Muhammad Rafi
,

Shaheed Zulfikar Ali Bhutto Institute of Science and
Technology

90 and 100 Clifton
Karachi -75600

Abstract—The Turing Machine model has proven to be capable
of simulating every known computational model. Since its
inception the model has served as the basis on which
computational devices have been constructed. The paper focuses
on highlighting the fact that Turing Machine serves as a precise
model for defining and executing a specific algorithm based on
the Computability Theory. The paper also highlights the fact
that when executed on a Turing Machine an algorithm’s time
and space complexity can be analyzed based on the Complexity
Theory. Therefore, this model can serve as a superb abstraction
for the computational devices as number of steps and space
required to execute an algorithm can be predicted. It is worth
mentioning that the simulator engine named Reflector designed
in this study is the foremost simulator in the regards to have the
distinct capabilities of; firstly dynamically modelling a Turing
Machine based on its manifestations and secondly performing
Time & Space Complexity Analysis of an algorithm executed on
the Turing Machine.

Keywords— Turing Machine, Computability Theory, Complexity
Theory, Time Complexity, Space Complexity, Reflector

I. INTRODUCTION

The Turing Machine model has stood the test of time. It
has proven to be capable of simulating every known
computational model as was claimed by its inventor, Allen
Turing. Complex computational Models like quantum
computing, parallel and probabilistic computing, internet and
digital computers which were not even conceived when this
model was designed have been successfully simulated on it
[1]. This model continues to serve as the basis on which
computational devices have been constructed and has been an
active area of research even after 75 years of its inception.

II. PROBLEM STATEMENT

Although considerable amount of work has been done in
understanding of this illustrious model in terms of simulating
machines based on their descriptions, however there has been
considerably less work in developing simulators which are
capable of exhibiting the multiple functionalities namely:

1. Dynamically modeling and simulating Turing
Machines described on runtime specifications based on
Computability Theory.

2. Performing Analysis of algorithms executed on
these models in terms of Time Complexity and Space
Complexity based on Complexity Theory.

This Independent Study attempts to design a simulator
called Reflector that exhibits the above mentioned
functionalities thus complying with the Computability
Theory and Complexity Theory. This leads to highlighting
the primary fact that the Turing Machine model remains an
excellent abstraction for the computational devices because
the number of steps and space required to execute an
algorithm can be predicted.

III. LITERATURE REVIEW

A. Computation and the Turing Machine Concept

Many now view Computation as a fundamental part of
nature, like atoms or the integers. The definition of the word
‘computation’ continues to evolve with the advancement in
the field of Computer Science. In the Rebooting Computing
Summit of January 2009, “What is Computation” was
identified as the most important question in the computing
field [2].

Alan Turing in his seminal paper precisely answered this
question by describing his Turing Machine model, which
states that “A Turing Machine is capable of computing
anything that is computable [3].

Not only the classic Turing Machine model has served as
the basis on which computational devices have been
constructed but also the definition of computation as given by
Turing has proven to be unalterable to date.

In the early part of 20th century the concepts of
“computers” and “computation” were used but in different
perspectives. Computers were those human beings who
performed computations while Computation stood for the
manual steps executed in a specific order for evaluating
functions of mathematical nature. During this era, Kurt Gödel,
Alonzo Church and Alan Turing [3] separately defined
computation. Gödel defined it in terms of the recursive

23
Journal of Independent Studies and Research – Computing Volume 11 Issue 2, July 2013

functions, Church in terms of the evaluations of “lambda
expressions” and Turing defined it in terms of his Turing
Machine model.

Moving forward it can be seen that the definition of
Computation has progressively elaborated [4]

 1940’s it was termed as an area of study
involving automatic computing

 1950’s it was termed as study involving
information processing

 1960’s it was termed as study of phenomena
around computers

 1970’s it was termed as study of what can
possibly be automated

 1980’s it was termed as study of computation
 2000’s it is termed as study of natural and

artificial information processes

As cited above the understanding of ‘Computation’
deepens itself as the time progressed. However it is worth
mentioning here computation models that were not present
when Turing Machine was conceived have been successfully
simulated on it, thus high lighting the fact that the Turing
Machine is capable of simulating every known computational
model and the association of Computation with Turning
machine still stands firm.

B. Computability Theory and Simulation Works

Automata theory and Computability theory forms the
foundation of computation and hence are instrumental in
developing a deep understanding of Turing Machines and
Automata. Based on these two theories, over the last 50 years
considerable work has been done in writing Simulators for
Turing Machines and Automata. These works can be
categorized into two types [5]

 Text based Simulators simulating on the basis of
Notational Language

 Visual based Simulators simulating on the basis
structured input

1) Text Based Notational Language Simulators: Some of
the notational language based simulation works are: Coffin [5]
has developed a Notational Language based simulator which
can simulate Turing machines. An ordered sequence of
quintuples is used to manifest a specific Turing Machine. An
infinite and multiple track tapes simulator was developed by
Head [5]. It works in a specific notational language format
defined by fixed templates. Harris [5] has worked on
developing multiple simulators that are used for executing
finite automata, pushdown automata and Turing machines.
These also work on notational languages where each
instruction is represented as a tuple. University of Northern
Colorado uses Scott’s [6] Turing Machine notational language
based simulator for educational and research purposes.

2) Visual Simulators: Some of the works belonging to
Visual simulation accepting structured input are: Hannay [5]
developed a visual centric simulator which is capable of
simulating finite automata, pushdown automata and Turing
machines. Vieira’s [5] visual centric simulator called

Language Emulator is capable of simulating automata, Mealy
and Moore machines.

3) Latest Works: The latest works done by Bhattacharyya,
M. [7] are also important in this regards. His notational
language based simulator formulates a Turing machine with a
read/write tape. The symbols are written and read from the
tape. The machine’s description is loaded into it via a
structured text file comprising of the instruction set. The head
is capable of moving in both left and right directions.

It is evident from the sources highlighted above that
Turing Machine simulation has been an active area of
research since last 50 years, which continues to draw in
attention.

C. Complexity Theory and Turing Machines

After mentioning the works on Computability Theory we
move towards the Complexity Theory. It is observed that
Turing Machines can be analyzed from the aspect of
analyzing the resources required in terms of time and space to
compute a specific problem.

1) Time Complexity of a Turing Machine: The Time
Complexity of a Turing Machine can be defined as a function
where f(n) is the maximum number of steps that the Turing
Machine ‘T’ uses on an input of size ‘n’. If f(n) is the running
time of T, we say that T is an f(n) Turing Machine [8].

2) Space Complexity of a Turing Machine: The Space
Complexity of a Turing Machine can be defined as a function
where f(n) is the maximum number of tape cells that he
Turing Machine T scans on any input of length n. If the space
complexity of T is f(n) we say that T runs in space f(n) [8].

As said in the abstract the research focuses on
developing a Simulator that will comply with Computability
Theory by simulating Turing Machines based on their
manifestations and with Complexity Theory by analyzing
Time and Space complexity of the algorithms executed.

The literature review clearly highlights the fact that the
Turing Machine model has served as the fundamental and
primary reference for understanding and innovating the
computation concept as it has proved capable of simulating
every known computational model. It also serves as a superb
abstraction for the computational devices as number of steps
and space required to execute an algorithm on them can be
ascertained.

IV. RESEARCH METHODOLOGY

The research methodology adopted for this research is
‘Experimental Research’. The Experimental Setup designed
for this purpose is the Reflector Engine, designed and
developed in java (discussed in the next section). The
Independent Variable used is the Turing Machine
Manifestations and the Input String loaded in the ‘Matrix’
Module while the Dependent variable is the Time & Space
Complexity values generated via the Observer & Analytix
module.

To enhance experimental validity, in each experiment the
Input Strings belonging to the language recognized by the

24
Journal of Independent Studies and Research – Computing Volume 11 Issue 2, July 2013

specific Turing Machine are manipulated and results are
observed

V. EXPERIMENTAL SETUP AND DESIGN

Below is the Reflector – Architecture designed for
conducting the research experiments. As is evident from the
diagram the Simulator is logically grouped into 2 modules;
one focusing on the Computability theory and the other
focusing on the Complexity theory

A. Reflector Engine- Architectural Model

B. Reflector Engine- Module Wise Description

Reflector is designed and developed in Java using Eclipse
IDE. The module wise description is as follows:

1) Controller: The main module that integrates and
coordinates with other modules.

2) Reel: The Reel is the “tape” part of the Turing
Machine and is used as reading/writing input/output. To
facilitate the read/write operations the Reel is implemented as
two separate Heaps; one represents the left and the other
represents the right side of the Reel. The ‘Input Set’ is written
to the Reel.

3) Hover: The Hover works as a ‘Head’. It loads the input
value to be processed into the ‘Reel’. The Hover moves one
by one over each literal; its movement is controlled by the left
hover and right hover functions.

4) Signature Set: Signature represents the name and
description of each state of the machine. Together all the
states of a machine are called its ‘Signature Set’; responsible
for differentiating a Turing Machine from another.

5) Instruction Set: The set of instructions a machine
executes in order to perform its destined task is called
Instruction Set. Similar to the Signature Set, the Instruction
Set of a machine is different from other.

6) Matrix: Matrix forms the Control Plane of the
Reflector. It is to the Matrix that the relevant ‘Signature Set’
and ‘Instruction Set’ is loaded via the ‘Matrix Loaded’
process. Matrix forms the brain of the Reflector.

7) Simulator: The Simulator together with the Controller
is responsible for ‘Creating a Turing Machine’ based on its
Signature Set. It is also responsible for ‘Machine Traversal’
from one State to another based on the Instruction selected
from the ‘Instruction Set’ and the ‘Input Set’.

8) Observer: Observer is responsible for performing
Time Complexity Analysis by tracking the number of steps
executed in validating the ‘Input Set. It is also responsible for
Space Complexity Analysis by measuring the number of Reel
Cells utilized in determining the output.

9) Analytix: The Analytix is responsible for analyzing
and producing the results as generated by the Observer.

 25
 Journal of Independent Studies and Research – Computing Volume 11 Issue 2, July 2013

B. Reflector Engine- Component mapping to Turing
Machine’s 7 tuples:

VI. EXPERIMENTS AND RESULTS

Multiple experiments were conducted on the Reflector
Engine. Below is the list of some Turing Machines simulated
on the Reflector Engine:

1) Palindrome Machine
2) - Decider Machine
3) anbn - Decider Machine
4) Even parity Recognizer
5) Odd parity Recognizer
6) Unary to Binary Converter
7) Binary Increment Generator
8)

Each experiment conducted comprised of two phases:

1) Simulating a specific Turing Machine as per its
Signature Set and Instruction Set.

2) Analyzing Algorithmic Complexity in terms of
Time & Space Complexity with multiple input
values.

To ensure experimental validity diversified Turing
Machines were used and diversified input values on each
machine were used. Two experiments of the relevant
machines listed are discussed below.

A. Palindrome Machine

1) Machine Description: This machine recognizes strings
belonging to the palindrome language. These strings when
reversed do not change; valid strings include ‘abba’, ‘bab’.
The machine reads and strikes the first letter, then goes to the
end, if same letter is found it strikes it but if not the machine
‘Rejects’. It continues until similar letters at both ends are
found and finally ’Accepts’. The Signature Set and Instruction
Set of the machine is shown next.

3) Machine Design:

3) Execution: Below is the log from Reflector.

26
Journal of Independent Studies and Research – Computing Volume 11 Issue 2, July 2013

4) Results: The results generated by the Observer and
Analytix Module of the Reflector Engine are:

B. - Decider Machine

1) Machine Description: The machine works as a decider
deciding the strings belonging to the language ; valid
strings include ‘’00’,’0000’. This machine has distinction of
exhibiting ‘Computer memory’ concept. In each iteration it
strikes of the number of 0’s in half. During the iteration as it
moves to the end it keeps track that whether the number of
zeroes it has seen is ‘even’ or ‘odd’. If ‘odd’ and greater than
1, it crashes as the original number of ‘zeroes’ could not be a
power of 2.

1) Machine Design:

5) Execution: Below is the log from Reflector.

6) Results:

VII. CONCLUSION

The research focused on designing a simulator called
Reflector. It is the foremost simulator to have both the
capabilities; first dynamically modeling a Turing Machine
based on its manifestations (Signature Set & Instruction Set)
and secondly performing Time & Space Complexity Analysis
of an algorithm executed on the Turing Machine. The
research emphasized on the fact that Turing Machine serves
as a precise model for defining and executing a specific
algorithm based on the Computability Theory & analyzing its
time and space complexity based on the Complexity Theory.
It can thus be concluded that this model has served as the
fundamental reference for understanding and innovating the
‘computation’ concept. The Turing Machine model remains
an excellent abstraction for the computational devices as the
number of steps and space required to execute an algorithm
can be predicted.

27
Journal of Independent Studies and Research – Computing Volume 11 Issue 2, July 2013

References

[1] Fortnow, L.. What is Computation. Ubiquity, An ACM
publication, 2010

[2] Denning, P. J.. What is Computation. Ubiquity, An ACM
Publication, 2010

[3] Turing, A. On computable numbers, with an application to the
Etscheidungs problem. Proceedings of the London Mathematical
Society. , 42:230–265, 1936

[4] Denning, P. J. Computing Field: Structure . In Wiley
Encyclopedia of Computer Science and Engineering (B. Wah,
Ed.). Wiley Interscience, 2008

[5] Pinaki Chakraborty, P. S. Fifty Years of Automata Simulation: A
Review. ACM INROADS Volume 2, 2011.

[6] Scott, T. A.Turing machine simulation used in a breadth first
computer science course. Journal of Computing in Small Colleges,
22(1): , 240-245, 2006

[7] Bhattacharyya, M. Simulating a Turing Machine. ACM XRDS
VOL.18 NO.3 SPRING 2012 .

[8] Sipser, M.Introduction To Theory Of Computation by Micheal
Sipser MIT. Boston, Massachusetts: Thomson Course
Technology, 2004

 28 Journal of Independent Studies and Research – Computing Volume 11 Issue 2, July 2013

