
Journal of Independent Studies and Research – Computing Volume 12 Issue 1 January 2014 18

Enhancement in existing agile methodology to

counter the issues and challenges in QA process
Ali Ashraf Khanani and M. Ejaz Tayyab

Department of Computing, SZABIST, Karachi, Pakistan

ali_khanani@hotmail.com and ejazshaikh@yhaoo.com

Abstract— The title of my research paper is ―Enhancement in

existing Agile Testing methodology to counter the issues and

challenges in QA process‖. In this research study I have worked

on the issues that are faced by QA teams during agile

methodology processes and have identified ways of improvement

in current agile frameworks that is being used.

The solution to counter the challenges and issues during testing

phase is proposed to improve the time constraint in a testing

environment and making testing an easy and effective job in

terms of cost and time constraints in an agile environment where

deadlines are very strict and time is always short. At the end,

there is a survey and interview with domain expert to analyze the

results achieved and to prove the hypothesis of my research.

Keywords-Agile development; software; quality control; software

quality assurance process.

I. INTRODUCTION

Current trend of organizations and industries has been moved

or being rapidly moving towards agile methodology and

development model. So first we should know what agile

methodology is, it is a model for software engineering that is

similar to SDLC models. This agile methodology de manifesto

is to promote changes and is used for rapid development. As

every process or model has their very own advantages and

disadvantages similarly agile methodology also has its

advantages and disadvantages [1]. Agile methodology is more

focused towards development and promotes rapid

development so new things comes around in a software that

makes the software worthy and increases the amount of

requirements making a software well established and costly

for the clients which is an advantage for following

methodology due to brace of change. The other advantages of

agile methodology is the fast pace environment making the

employees to learn new things rapidly making them efficient.

Since agile embraces change it also has the ability to satisfy

the customer by rapidly delivering the new releases promptly

for which customer satisfaction is the most important [2-3].

Agile is an incremental model and works on sprints let‘s say

e.g. if a sprint is of 3 weeks then new requirements are being

delivered on those 3 weeks, similarly the n number of sprints

is continued. This also gives the advantage of brining in late

changes which can be adjusted in another sprint which makes

the pattern quite efficient. Communication in agile

methodology is on top that leads to cooperation between

testers and developers, developers and requirement engineers

and vice versa.

Since nothing is perfect similarly there are disadvantages and

challenges for agile methodology that needs to worked upon.

As the organizations trend towards agile methodology is

flowing the measures need to be taken to minimize the

challenges and issues with the agile methodology process.

The issues and challenges for agile methodology will be

discussed in details below.

There are few of the models in agile development

methodology which can be used. We will below see what type

of models exists in agile methodology. Following below are

the model that exists in agile methodology.

 Scrum.

 Extreme Programming.

A. Scrum:

Scrum is the model in agile methodology that focuses on short

meetings. The objective of scrum is to initiate a small meeting

by a scrum master which is usually the project manager. There

are two scrums held, one would ideally be at the start of the

business hours in which scrum master initiates a session with

the team to ask what would be done by each of the member.

And similarly there is another scrum at the end of the day

where scrum master takes the status of what was done and

what is left behind. There could be various adjustments in

timings of scrum which can vary organization to organization.

The initial motive of scrum is to get updated on what items

team is working, as agile preliminary works on people and

resources rather than process and tools. [4-6]

B. Extreme Programming:

Extreme programming is another methodology used in agile

development. In this method developers works in teams, while

one is developing the other would be doing pair programming

at the same way to see if anything is left from the eyes of the

first developer – as two eyes are always better than one. [7-8]

Now, considering organizations that shifts towards agile

methodology, my goal is to identify problems and issues

during testing in an agile development environment and its

impact to the testing team, and considering those problems my

goal is to provide a solution. Similarly I being part of the

production team see many issues that come on a fly in

production environments that are not being catered in testing

team which becomes crucial at times on the severity of the bug

reported, therefore to make the testing process smooth within

the agile methodology I will be doing my Independent study in

this area to mitigate the risks and issues that comes in real time

environment.

II. LITERATURE REVIEW

Agile methodology is the domain under which many

researchers are working on streamlining the process but there

still seems to be issues and loop holes that need to be covered.

Most of the work in agile is done for process improvement in

mailto:ali_khanani@hotmail.com
mailto:ejazshaikh@yhaoo.com

Journal of Independent Studies and Research – Computing Volume 12 Issue 1 January 2014 19

development area. Most of the work is done is based on survey

to the current trends in agile methodology. [9]

As we discussed in section 1 the advantages of agile testing

methodology, now we will list the drawbacks and issues that

are faced for testing teams in process for agile methodology.

After reading numerous papers, meeting with organizations

and rigorous literature survey and through my working

experience I was able to find out the issues in real world that

are faced to quality assurance process in agile methodology.

Following below are the list of issues which will be briefly

described.

• Time constraint

• Daily check-ins

• Setup daily test environments

• Rework of testing

• Integration of updates

• Short test executions

• Agile devalues documentation

• Excessive meetings

• A lot of manual testing

• Scrum adding too many people to the situation makes

things worse

A. Time Constraint

Time constraint is a big challenging factor in agile

development where delivering a project is very crucial in the

fast paced environment. [1] The issue here for software quality

assurance is the time constraint on which they need to get the

project tested. Considering a sprint of 4 weeks this process

contains development as well as testing, so it‘s a burden on

testing team when everything gets fallen at the end of the 3rd

week. This allows them with only a week to go with the whole

testing of new requirements including the bug fixes. This is a

very challenging issue for software quality assurance team due

to which sometimes the deadlines are unable to meet or some

of the requirements are left over to be tested which in terms

increase more time or if the issue was not caught due to time

crunch it could possibly break in production environments.

B. Daily Check-ins

As we know check-ins is the code that is added to the

repository, this is also issue in agile software development

where developers do rapid development due to which unstable

keeps getting checked-in. The issue here for testing team is

with this rigorous amount of check-ins causes hourly

environment setups for the new check-in added. This is very

hard for software quality assurance to test with code that is

highly unstable where they get daily check-ins coming

continuously.

C. Setup Daily test environments

First we need to know what we meant here by setup daily test

environments. As we got to know above that developers

checks-in code daily with lots of iterations which puts in

quality assurance people to setup environment with that

specific code that is checked-in most recently. So consider,

even for a single line check-in by a developer makes to put

effort of quality assurance personnel to very high, as he/she

needs to get it deployed all over the test-beds multiple times

whenever a new check-in is added. The stability of that code is

also very important since, let‘s say for example there is a

working environment where all testing tasks are performed,

some new fix was added meanwhile by the developers and to

cater that fix, testing team is to update the environment with

that code. But due to some unforeseen events the new fix

didn‘t work even it failed to start other component causing

time loss for testers as all the testing is being stopped until the

new fix comes in. These types of situations and delays could

occur in agile methodology.

D. Rework of testing

Another issue in agile methodology is that there is a lot of

rework of testing. In a sprint of 4 weeks we can have some

new requirement changes and some bug fixes. To test only

those changes could be pretty straight forward but the issue

comes in when adding those new changes a tester needs to test

its impact on other components as well, that‘s what causes

rework of testing. If this doesn‘t get tested there could be a

probability of that issue hitting in production. This issue

comes up for all the sprints that everything needs to be tested

before getting deployed it over to production environments.

E. Agile devalues documentation

Documentation is a very important piece of developing and

creating software. As we see complex software contains huge

and comprehensive documentations. But agile works

differently as it devalues documentation and more focus on

people rather than process and tools. This hits testing team as

test cases are the major part of test any component. We don‘t

have that comprehensive level of test cases or the new

requirements are not rapidly documented. If there is a new

requirement then there would be change in test case as well

but due to agile devalues it there are not much of test cases

that are updated which is another issue for a testing team.

F. Excessive Meeting

Meetings can be in every model whether it is Spiral, waterfall

or RAD. But in agile there are excessive meetings, there is a

daily scrum in agile [8]. Scrum means short meetings but

usually when there are too many people it doesn‘t remain short

and could take up to half hour, whereas, per agile manifesto

the scrum time is in between of 15-20min. There are usually

two scrums every single day, one in the morning which is used

to prioritize what will be done today on the other way there at

the day end which discuss what had been done. This can sum

up a lot of a time if we calculate half an hour in meetings for

each resource.

G. Manual Testing

In agile methodology there is a very little space for manual

testing. The reason behind this is that we have very less time

and too much to test. In agile, most of the things need to be

automated which itself is a costly job for development to

automate stuffs.

H. Scrum adding too many people to the situation makes

things worse

Having too many people in a scrum makes things worse and

more time consuming. The reason behind this is if we have

people from development, testing and engineering and the

tasks are to be divided in between development and

engineering then there is no need for testing people in the

Journal of Independent Studies and Research – Computing Volume 12 Issue 1 January 2014 20

meeting [10]. Involvement of too many people would not

solve the problem but would increase the complexity. This

eventually sums up more time in meetings due to which it

impacts the testing deadlines.

III. TYPICAL IMPLEMENTATION AND PROPOSED

PROCESS

After a thorough literature survey and research, the knowledge

was built for agile model and issues faced during software

quality assurance process. Before coming up to the solution, to

correctly analyze the processes was very important and is also

covered in this literature survey. We have followed prototype

model to proposed solution. The prototype contains enhanced

version of agile model. First, we will discuss the four

quadrant used in agile methodology. Testing in agile

methodology covers four quadrants that are to be tested, we

had already discussed the issues that testing team faces in

software quality assurance. First quadrant contains the entire

unit testing that needs to be done before checking in the code

to the repository. This quadrant can be tested through

automated tools, such as, Selenium and others. The first

quadrant gives team the ladder to work on the second quadrant

which is quadrant 2. The second quadrant consist of testing‘s

such as functional testing, prototype testing and testing the UI.

This step covers a lot of automated and manual testing that

needs to be done by the testers. To get working on the

functional testing of the user interface we need to make sure

that the first quadrant is green, that is, unit testing and

component testing is completed successfully. Once the second

quadrant is completed, there comes third quadrant that

potentially contains testing scenarios and usability of

components. Whereas, an extra step has been added in the

quadrant three to test the performance and load testing of the

system to see if the system is scalable. In existing agile

methodology performance and load testing belongs to

quadrant four but as an enhancement to reduce issues, we have

brought in quadrant four to more productive cycle. Quadrant

four is used for executing whole set of tests. This includes the

execution of artifactory run which will test all the binaries and

code is in stable condition before we deploy it over to

production since this is the last and final step that needs to be

conducted. Once all the four quadrants are completed, we

consider the features and bugs in a sprint are tested and ready

to handover. Below is the figure that shows the four quadrants:

Fig. 1. Four-Quadrant representation

A. Test Approach and proposed strategy

Now, the solution that is proposed to mitigate the issues in

software quality assurance is that we divide the testing of these

four quadrants in the ownership of testing team and

development team. Since agile manifesto says developers

should think like testers and they should test as well. Therefore

we have proposed a process such that the quadrant one where

the entire unit tests and component testing is done should be

done by the development team once the developer check-ins

the code. The benefit of getting this done at the spot by the

development team is if anything breaks in then it is

immediately caught before even moving to the testing

environment as developer get it fixed. This would save a lot of

time for software quality assurance team and subsequently for

the entire project. Furthermore, issues that could arouse in

testing environments which can become showstopper because

of bad code checked-in would be mitigated. Now, the issue of

time constraint daily check-ins could considerably be

minimized since the unit testing part is moved to the

ownership of testing team and we could expect daily check-ins

that are stable and won‘t hurt testing environments with

showstopper issues. The approach for quadrant two will

remain the same as functional testing and user interface testing

would be done by the test engineers. But the benefit they

would get is that they would directly start from quadrant two

once the code gets checked-in since testers would expect that

the checked-in code has already gone through various unit

testing and component testing. Approach for third quadrant

also remains the same as testers need to manually find out

potential bugs from scenario testing and user acceptance

testing. But to reduce the challenge of rework of testing and

daily check-ins we have introduced a concept of pods where

there will be multiple environments as pods and each of them

would have a separate version installed. Let‘s say, if we have

ten pod environments so we could avail ten different versions

running on ten different pod environments. This will facilitate

the testing team to easily track the issue introduced in some

release to see whether this is an environment issue or a code

issue. Adding pods in the infrastructure will reduce the time

spent in troubleshooting the issue to see if it‘s a bug in a

system or if that‘s some environment related issue. Setup time

will drastically reduce for similar check-ins. Once testing team

is done with all the measures of testing they would perform

performance and load testing on the software and test it before

releasing it to quadrant 4. Once the testing team gives a go

ahead for all test cases completed the next quadrant i.e.

quadrant 4 starts which hold off the final execution or final run

of aritifactory to validate all the binaries and jars are stable.

This is another quadrant that is being handed over to the

development team and now they owned it. If the execution of

the run is green which means we are ready to tag the final

release but if it fails at some point then it holds off until the

execution is green.

Now, for the software quality assurance folks the ownerships

are for quadrant 2 and quadrant 3 only whereas the quadrant 1

and quadrant 4 will be handled and owned by the development

team.

B. Proposed Roles in Agile

Depending on what requirements and what bug fixes are the

new set of roles are implied for the programmers and testers.

Journal of Independent Studies and Research – Computing Volume 12 Issue 1 January 2014 21

No matter what tasks are provided in a sprint the following

tasks in figure 3 represents what type of tasks would be

perform by what person.

Fig. 2. Represents proposed role in Agile

C. Proposed Test process

The proposed test process contains a more tangible test

process defining the flow of testing process. Figure 3.3

represents the flow of test process that is devised where what

activities would be done by tester and what activities would be

done by the developer is proposed. Below show is the Figure

3.3. briefly describing the proposed test process.

Fig. 3. Representing proposed test proces

For excessive meetings the proposed solution is to add only

one representative of each team to be in the meeting instead of

all the resources coming in for the meeting. Through this

process we have reduced the time savings and efforts. This

include minimizing the meeting time, to prove this let‘s

consider the company has 150 resources and each of the

employee spends 30 minutes on morning scrum and day end

scrum which in total turn out to be 75 hours daily spend in

meetings. As per our proposed plan for meetings the meeting

time can be reduced to almost 75%. Say let‘s consider if the

number teams in the company are 10 and each member

representing the team would add 10 people in the meeting

including some managers and project managers taking the

scrum. If the total number of population goes up to 30 people

attending the meeting daily this would reduce the hours from

75 to only 15 hours, which is a lot of time. The other

remaining 60 hours could be consumed in some other tasks.

As per the proposed new roles in agile and the test process the

consolidated Figure3.4 represents the proposed process of

agile development is enhanced with following figure.

Fig. 4. Representing proposed test proces

IV. SURVEY

A survey was conducted to validate the proposed process.

Following figures shows the survey results

A. General Questions

Fig. 5. Represents results for Area of field

Journal of Independent Studies and Research – Computing Volume 12 Issue 1 January 2014 22

Fig. 6. Represents the model followed in company

B. Process Validation Question

Fig. 7. Daily check-in issue result

Fig. 8. Time constraint issue results

Fig. 9. Daily check-in issue result.

Fig. 10. Rework of testing issue results

Fig. 11. Excessive meeting issue results

Fig. 12. Testing final artifacts survey

Fig. 13. Manual testing issue results

Journal of Independent Studies and Research – Computing Volume 12 Issue 1 January 2014 23

Fig. 14. Proposed Solution weight

C. Consolidated Result

Fig. 15. Shows the percentage of people in support and not support with the

proposed process

CONCLUSION

In this paper, we focused on the enhancement of agile testing

methodology to fix and cater to the issues in software quality

assurance process. We have identified numerous issues which

testing teams face in real world environment, such as, time

constraints, daily setup environment, rework of testing,

missing documentations leading to mishaps in testing,

excessive meetings leading to work not done in time and

moving down the deadlines, manual intervention and manual

testing in a short execution iteration that takes a lot of time. To

cater to the issues, we proposed a process using four quadrants

which were divided into four important testing parts including

unit test, performance testing, functional and nonfunctional

testing and overall running an artifactory run to see if the

binaries and codes are stable. Those 4 quadrants are then

strategically divided between development and testing teams.

Q1 and Q4, which included unit testing and running artifacts,

are to be in the ownership of the developers whereas Q2 and

Q3, that includes functional, non-functional and performance

& regression testing comes in the ownership of software

quality assurance team. We then conducted survey and

interview with domain expert to get the suggested

improvements validated.

After preparing the results that we got through our survey and

calculating the consolidated results we found that in the favor

of our hypothesis with a healthy result of 3.78 out of the scale

of 5. Though the population and sample size was not too big

and was of 34 but considering the population consisted of

targeted experts, with these results we can say that our

hypothesis is true.

FUTURE WORK

The future work includes implementing the proposed process

of agile model to a known software house. Live demo and

training session would be provided to organizations for the

validity of the new process and to implantation Validation

technique used in this process was survey but the population

size of the survey was to thirty four sample size due to time

constraints. In future work, we would also do the survey for a

large number of sample size to validate the results to know the

outliers in the processes.

Survey population for this research is very limited numbers so

the results generated may vary with a big population but we

could get an intimate from the results we have got. We can

conduct a survey with large amount of population in the future

to see the probability of people that are in favor of the

suggested improvements identified in the process.

ACKNOWLEDGEMENT

The author would like to thank Allah with the grace of God he

was able to complete his research. He is also extremely

thankful to Ejaz Tayyab for the support and knowledge

sharing he provided during the research period.

REFERENCES

[1] Meneely, A, Williams, L, Osborne, J.A. Yonghee Shin,

"Evaluating Complexity, Code Churn, and Developer Activity

Metrics as Indicators of Software Vulnerabilities," Software

Engineering, IEEE Transactions on (Volume:37 , Issue: 6) , pp.

772 - 787 , 2013.

[2] Seliya, N, Khoshgoftaar Yi Liu, "Evolutionary Optimization of

Software Quality Modeling with Multiple Repositories,"

Software Engineering, IEEE Transactions on (Volume:36 ,

Issue: 6), pp. 852 - 864, 2010.

[3] Claes Wohlin Kai Petersen, "The effect of moving from a plan-

driven to an incremental software development approach with

agile practices," Empirical Software Engineering, pp. 654-693,

2010.

[4] Orit Hazzan, Yael Dubinsky, Arie Keren David Talby, "Agile

Software Testing in a Large-Scale Project," IEEE Software, pp.

30-37 , 2010.

[5] Diana Brown, Agile User Experience Design: A Practitioner's

Guide to Making It Work. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc. San Francisco, CA, USA ©2013 ,

2012.

[6] B. Henderson-Sellers A. Qumer, "A framework to support the

evaluation, adoption and improvement of agile methods in

practice," Journal of Systems and Software, 1899-1919 2013.

[7] Jeff Sutherland, "Introduction to Agile Software Development:

Lean, Distributed, and Scalable," 2012 45th Hawaii

Journal of Independent Studies and Research – Computing Volume 12 Issue 1 January 2014 24

International Conference on System Sciences, 2012.

[8] Claes Wohlin Kai Petersen, "The effect of moving from a plan-

driven to an incremental software development approach with

agile practices," Empirical Software Engineering, pp. 654-693 ,

2011.

[9]

[10]

Borje F. Karlsson, Andre M. Cavalcante, Igor B. Correia,

Emanuel Silva Andreia M. dos Santos, "Testing in an agile

product development environment: An industry experience

report," LATW '11 Proceedings of the 2011 12th Latin American

Test Workshop, pp. 1-6, 2011.

Jussi Kasurinen, Ossi Taipale, Kari Smolander Vesa Kettunen,

"A study on agility and testing processes in software

organizations," ISSTA '10 Proceedings of the 19th international

symposium on Software testing and analysis, pp. 231-240, 2010.

