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Abstract—Recommendation systems are used to 

recommend items or products to the user based on their 

previous purchases, visits, interests, ratings, wish-lists or 

reviews to develop interest and to display the accurate 

and suitable items on board. Recommendation systems 

are used in various online shops (E-Commerce 

application) and decision making systems. 

Recommendation is a particular form of information 

filtering. It falls under the Data Mining and Machine 

Learning. Collaborative Filtering is the key technique 

used in this system.  In this study, the data loading, model 

generation, recommendation implementation and 

accuracy of same algorithm on some major tools and 

libraries (GraphLab, Mahout-Hadoop, Mahout-Spark 

and MLLib) has been discussed. To serve the purpose, a 

well-known algorithm Alternating Least Square ALS for 

collaborative filtering was used.  Netflix Prize (training) 

data set was used in this research with the listed tools and 

libraries. At the end of this research a factual 

comparative analysis of the tools was carried out. 

Keywords—Recommendation System, Machine 

Learning, Collaborative filtering 

I. INTRODUCTION 

Recommendations make decisions easy and fruitful. 

People are confused occasionally when buying variety of 

items for example CDs, Books, Electronic Items, Mobile 

Phones, Grocery and etc.. They need user reviews, ratings or 

proper representation of the top selling items. Here, 

recommendation system becomes handy which provide users 

with relevant, rated or reviewed items similar to the users 

searched item of interest. There are tools and libraries 

available that implement accurate recommendation systems 

with known algorithms which heavily use modern CPU 

architecture and works with Disk or in Memory based 

read/writes and designed for clusters of computers for 

distributed processing of large scale data. Model generation 

and Data load time of these tools are variable with respect to 

their data models and efficiency of algorithms. Tools that 

have been selected for this study are based on Hadoop file 

system and selected works with in-memory RDD based 

processing. Hadoop file system achieves fault tolerance with 

the help of replication mechanism over the distributed nodes 

[1]. While discussing about in-memory based processing that 

is Apache Spark which is used by MLlib and Mahout, the 

fault tolerance is achieved by Lineage mechanism or 

recovers lost data sets over the distributed nodes [2]. 

Following are the approaches to achieve recommendations. 

1)     Collaborative filtering 

2)     Content based filtering 

3)     Hybrid Recommendations 

 

The point of discussion in this research is collaborative 

filtering and the methodologies, tools and their performance, 

data models and algorithms to achieve accuracy. Some of the 

tools that have been selected in this study are using iterative 

algorithmic approach during execution and data model 

generation. Iterative Algorithms are used to solve certain 

problems in a cyclic manner to improve or boost its relative 

results. It is a mathematical approach to nonlinear or at times 

linear equations. It is also known as Convergent that is to 

merge the results of cyclic operations with the intermediary 

results of the operations performed and stops at the point 

which is approximate to the given initial predictions or 

approximations. Direct-method is used to solve specific 

definite solution of the given equations and there are finite 

steps involved in its solution [3]. In this study, single ALS 

(Alternating Least Count) algorithm has been selected to be 

used on tools. 

II. COLLABORATIVE FILTERING 

Collaborative filtering is a technique used in 

recommendation systems which facilitate to produce a list of 

recommended items for the user with proper representation. 

In collaborative filtering, the predictions are made from users 

to users’ basis or users to items basis i.e. certain user has 

reviews regarding an item and the other user may also have 

the same review for that item. The reviews are collaborated 

and the recommendation accuracy increases as a result of this 

collaboration. On the other hand, if various user rates an item 

with good points then its recommendation accuracy will 

increase and it is in the list of recommended items matched 

with the searched items. Automatic predictions can be made 

in collaborative filtering techniques by comparing the 

interests of similar users to each other [4].  
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A. Problems 

There are some problems or challenges in collaborative 

filtering. Few of them are discussed below. 

1) Sparsity (cold start):   User to Item matrix i.e.  When 

new items are added in system, they have no ratings, reviews 

and purchases. This cause sparsity (sparse matrix) in 

recommendations and the users are confused to purchase 

such items. If they belong to known brand then they have 

been purchased; otherwise, marketing and comparisons are 

required to make user interested in those items. No ratings, 

reviews and no purchase history may damage the 

recommendation accuracy and make data model sparse [5-6]. 

2) Scalability Issue:  A Data-set and user rating increases 

with time gradually which may take long processing times. 

More processing power need highly configured CPU and 

RAM consumption and all the clusters are so busy that extra 

hardware is added at runtime to maintain the processing 

accuracy which is costly and need maintenance [6]. 

3) Biased Ratings from users:  Users rate their liked 

products and brands they use and rate them on the basis of 

their experiences and some of them gives low rating and 

reviews to their opponents [6]. 

The  scalability issues is the point of discussion to  

increase the performance on large data-sets and to find better 

tools and libraries available for these issues with the help of 

an activity on local system. To produce benchmarks for the 

interested communities, business use cases. 

III. GRAPHLAB 

GraphLab is the high performance framework designed 

for distributed and parallel processing. It is an open source 

project by Apache. Originally, it was designed for Machine 

Learning or Data Mining task for asynchronous shared 

memory distributed environment. It works in an iterative 

manner. As the amount of data is growing rapidly and needs 

high computing power; therefore, Multi Core CPUs, Clouds,  

and Clusters are developed so  that  data  may  fit  on  more  

than  one  node (Graph)  and the distributive/parallel 

algorithms can be applied on that large scale data. GraphLab 

provides application programming interface for rapid 

deployment of algorithms for distributed environment i.e.  

for  machine  learning  written  in  C++  which  enhanced the 

execution of Graphlab programs, Multithreading and disk IO  

usage.  Number of machine learning and data mining toolkits 

are also integrated in framework [7]. TCP/IP is used for inter 

communication of the clusters of computers over the 

network. Message Passing Interface MPI is a standard which 

is used in distributed/parallel processing to manage or launch 

GraphLab programs. HDFS direct access and reads writes 

are allowed in GraphLab. Every process or program in 

graphLab is multithreaded so that it can use all multicores 

available in modern CPU architectures. (Figure 1) 

 

Fig. (1). GraphLab Architecture Diagram [7] 

IV. DATA MODEL IN GRAPHLAB 

There are vertices and edges in data graph which holds 

data that is mutable.  In  graphLab  every  vertex  and  edge 

is  associated  with  user  data.  GraphLab executes programs 

on vertices in parallel; each vertex can access nearby edges 

and vertices and can initiate other nearby vertex 

programs.GraphLab vertex programs are divided in three 

main phases which is Gather Apply and Scatter (GAS) 

Model also known as GAS vertex programs. In Hadoop there 

are MapReduce stages through which data passed through 

result calculated but in GraphLab this MapReduce stages are 

mapped on Gather, Apply and Scatter phases in such way 

that Gather and Scatter works similar to Map state and Apply 

stage works similar to Reduce[7]. 

A. GAS Model 

1) Gather Phase:   In this phase, a gather (vertex, edge) 

function in vertex class which is called on each edge linked 

to nearby vertex which gathers values from each edge to the 

connected vertex. Small squares (M) are the messages passed 

to nearby connected active vertices along edges. White 

vertices are the active vertices. Figure 2 demonstrates the 

activity performed in gather phase. 

 

Fig. (2). GAS Gather Phase 
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B. Apply Phase 

Apply (vertex, total) function written in vertex class is 

executed in this phase which apply the summation of 

gathered data from the edges on nearby connected active 

vertices so that it update its value. Figure 3 demonstrate the 

activity performed in apply phase. 

 

Fig. (3). GAS Apply Phase 

C. Scatter Phase 

Once again, scatter (vertex, edge) function written in 

vertex class is called on each edge to update its neighboring 

vertices from the processed value by apply phase. Figure 4 

demonstrates the activity performed in scatter phase. 

 

Fig. (4). GAS Scatter Phase 

V. APACHE HADOOP 

The open source Apache Hadoop framework used on 

clusters of computers for distributed processing of large scale 

data and designed in such a way that it scale up to many 

server in live mode. Hadoop framework contains modules 

such as Hadoop Common package, Hadoop Distributed File 

System (HDFS used on machines in a cluster to store data 

and provide high network bandwidth across the cluster), 

MapReduce (Data processing model) and Yarn (Resource 

manager for clusters). These abstractions are designed or 

defined in such a way that Hardware failures are common 

and the failures are detected at the application layer 

automatically which is handled by the framework so that 

delivering service availability more rather than hardware 

availability. 

VI. MAPREDUCE 

In depth there are some other steps involved in 

MapReduce task. 

1)     Data Input 

2)     Data Splitting 

3)     Data Mapping 

4)     Data Shuffling 

5)     Reduce 

6)     Result 

 

At data input phase, large data set is inserted into the 

system then it enters in Data Splitting phase where it is 

divided into many data blocks which are stored on 

commodity machines (Nodes) with  HDFS then  Map  

function is  applied on  that data  chunks where  it  is  sorted  

or  shuffled (Data  Shuffling phase) then Reduce function is 

applied on that sorted data for processing. After that final 

result, set is reconstructed from all data processed chunks. 

Figure 5 below explains the data flow in Hadoop 

MapReduce. 

 

Fig. (5). Apache Hadoop 

VII. APACHE MAHOUT (HADOOP) 

Mahout is a set of scalable machine learning java 

libraries focused on collaborative filtering, clustering and 

classification subproject of Apache Lucene started in 2008.  

Most of its implementation uses Apache Hadoop 

(MapReduce). It provides libraries for math operations like 

linear algebra and statistics. Single/Multi-Node or non-

Hadoop clusters are allowed to work with its 

implementations. It supports business use-cases as it is free 

under Apache software license, scalable for large data sets 
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that may run on single or multiple machines (nodes). Works 

on the top of Hadoop implementation, that is in key-value 

pairs model [8]. 

A. Apache Mahout (Spark based Implementation) 

Previously, Mahout was a machine learning library for 

Hadoop but now Mahout team works on Spark to allow 

Mahout for Spark and for this purpose, they have introduce 

Scala based DSL (Domain Specific Language) with algebraic 

expressions added to work with Mahout. Scala Language 

supports operator overloading and functional programming 

which support to build distributed code with linear algebra 

on Scala shell which is customized to work with Mahout to 

run Spark on it with defined Mahout DSL [8]. 

VIII. ALTERNATING LEAST SQUARE 

Alternating least square falls under the umbrella of Least 

Squares  and  the  goal  of  least  squares  is  to  find the  

evaluation of the parameters of a function f (x)  on data set  

A1 , , , , , An .  Least Squares method is the standard 

approach to find the close solution of over-determined 

systems. Over-determined systems the systems in which the 

number of known equation is more than unknown equations. 

Let a system have 2 unknown variables and 3 known 

equations [9] as shown in figure 6. 

 

Fig. (6). Equation: Alternating Least Square 

Least Square Method is sub-divided in two parts 

1)     Linear Least Squares 

2)     Non Linear Least Squares 

 

Further, Least Squares can be classified in weighted 

least squares (WLS), alternating least squares (ALS), 

ordinary least squares (OLS) and partial least squares (PLS). 

IX. ALS ALGORITHM 

ALS uses the sparse rating matrix R which holds the 

ratings given by the users to movies. It builds a linear data 

model users (U) and movies (M) low dimensional matrices 

from that sparse rating matrix. Rating Matrix R is the product 

of multiplication of low-rank User (U) and Movies (M) latent 

factors. ALS is an iterative algorithm and it minimizes the 

errors of summation every iteration. In every iteration, 

algorithm fixes one of the latent factor matrixes and solve for 

other by least square method and this process continues until 

it converges as show in figure 7. 

 

 

 

Fig. (7). ALS Algorithm 

X. APACHE SPARK 

Spark is an open source framework for data analytics on 

clusters of computers.  It  is  used  for  large-scale  data  

processing i.e. Big Data and builds on Hadoop Distributed 

File System (HDFS) and  it  also  provides advance 

execution of graphs with in-memory processing and data 

storage (RDD, Resilient Distributed Data-sets). It has many 

advantages over MapReduce execution stages and enhances 

performance up to 100 times faster than Hadoop [10]. 

Apache Spark process data with in-memory rather than on 

disk to save IO of disk read write cost and network 

bandwidth during data processing on different nodes within 

the cluster of computers with multi- pass Iterative algorithms 

that are required to be common on machine learning or graph 

processing tasks as shown in figure 8. In Hadoop, HDFS is 

an intermediate storage used to save the processed data set 

for replication at the completion of every state and read that 

output back in immediately to start the new state and fault 

tolerant is achieved by this replication mechanism over the 

machines in network. This is the overhead in between all 

these stages, similarly the interactive queries, each query 

have to face this network overhead and disk I/O and the 

distributive file system is slow by this disk I/O but it is 

required to achieve fault tolerance. In contrast to Apache 

Spark, the data will be processed in Memory or cached on 

disk drive that is locality of reference for faster access of data 

reads. Apache Spark works on Resilient Distributive Dataset 

(RDD) as HDFS in Hadoop for intermediate storage but no 

overhead is created like network or disk I/O in Hadoop. Fault 

tolerance is achieved in Spark by using Lineage, a 

terminology which describes the fault tolerance in such a 

way that on failure recomputed the lost partitions until 

success at certain timeout interval. If there is no lost then no 

cost for re-computation. Questions arises here that if any 

memory leakages are found in any of the nodes then what to 

do with the lost RDDs [2, 10]. 

 

Fig. (8). Apache Spark Work Flow  
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XI. MACHINE LEARNING LIBRARY (MLLIB) 

MLLib is a library for machine learning algorithms and 

utilities used with spark to support machine learning 

problems like classification, regression, clustering, 

collaborative filtering, dimensionality reduction and 

optimization primitives but MLlib was used and discussed 

with respect to collaborative filtering (ALS Alternating Least 

Square). MLLib is a standard component of Spark which 

provides machine learning primitives on Spark. MLlib 

provides Application Programming Interface in Scala, Java 

and Python languages currently. It executes 100x faster 

programs in memory than Hadoop MapReduce, but on disk it 

executes 10 times faster.  

XII. NETFLIX DATA SET 

To optimize or enhance the existing recommendation 

algorithm  of  Netflix,  a  competition  for  data  mining  

named Netflix prize was held on large scale data set of their 

own DVD rental system. The goal was to improve the 

accuracy of the recommendations or predictions of users 

ratings of movies data format = user ID, movie ID, ratings. 

Netflix training data set consists of 2 files: 

1)     smallnetf lixm m.train 

2)     smallnetf lixm m.validate 

There  were some  challenges  in  Netflix data  set  such  

as  the data  volume  and  data  limit.  Data  volume  of  this  

training set is small composed of user to movie ratings which 

spans of around 52M B  disk size i.e., (smallnetf lixm m.train 

: 44.1M Bandsmallnetf lixm m.validate : 7.4M B)  which on 

processing phase consumes high CPU usage so that it should 

be run on modern multicore CPU architecture with sufficient 

amount of RAM (min4GB). This training data set is limited 

but sufficient and accurate for the prize competition activity. 

Small Netflix data set must be altered according to the tool. 

While using with GraphLab, both files were in space 

separated and while using with Apache Mahout, they were in 

tab separated. 

XIII. EVALUATION 

A. Installation Machine Specs 

LENOVO B5400 machine with Ubuntu latest version 

was used to install all the selected tools and it has Intel Core- 

i5 2.50GHz processor and 8 GB of system Memory. 

Prerequisites are necessary for the installation and proper 

execution. 

B. GraphLab Installation and Execution Steps 

There is an official GIT repository of GraphLab from 

which a checkout on local machine was made. Commands 

listed below are used for git checkout. Before checkout, all 

prerequisites for GraphLab execution were install as shown 

in figure 9 below. Data set that had been used in this 

execution is same as used in Apache Mahout.  

 

 Fig. (9). GraphLab Installation and Execution Steps 

C. Observations of GraphLab Execution 

GraphLab  execution  involves  Remote  Procedure  Call 

(RPC)  connections with  local  machine by  obtaining its  IP 

and subnets to use Message Passing Interface (MPI) for data 

flow during execution. Firstly, it establish the connection 

(TCP layer) with the host machine successfully then it 

creates a cluster depending on the machine connected as in 

this study only  one  after  this  successful. Connection  

started  loading the graph from the given input files smallnetf 

lixm m.train and smallnetf lixm m.validate and read it line by 

line, then it display graph loading time 16.3477 seconds in 

this execution which is important and vary with respect to 

input parameters in execution command and CPU 

architecture of the machine. It then passes the data in graph 

and allocating memory for the execution and start ALS 

iterations on that data in graph producing RMSE (Root Mean 

Square Error) with respected time periods in seconds. 

D. Apache Mahout Installation and Execution Steps 

Installation   of   Apache   Mahout   required   any   

Linux (Ubuntu) machine with GIT installed on it to checkout 

from its official GIT repository.  Small  Netflix  train  and  

small Netflix validation files needed  to  be converted  in  

Tab  separated user I D  < Tab > item I D  < Tab > Ratings 

by Ubuntu console as shown in figure 10 below. 

 

 Fig. (10). Apache Mahout Installation and Execution 
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E.  Observations of Mahout Execution 

Mahout is observed with respect to Hadoop so Map and 

Reduce task are involved in this execution. When the 

command is executed on console, it finds the mahout local 

and Hadoop configuration directory first class path. If no 

Hadoop configuration directory is defined then it runs locally 

on the machine. Mahout then loads the input files smallnetf 

lixm m.train and smallnetf lixm m.validate from the given 

path in command and launches the Map tasks to split the data 

and create jobs to process those chunks and create the item 

ratings partial files by Reduce function. It merge the data in 

tmp folder and completes the jobs one by one while 

maintaining fault tolerance by replication in run-time and 

took total time to complete 133062ms (Minutes : 2.2177). 

F.  GraphLab vs. Mahout Execution Differences 

GraphLab and Apache Mahout Execution samples have 

been  taken  by  fixing  the  number  of  maximum  iterations 

at  the  interval  of  5  and  fixing  lambda  to  0.065  with  3 

CPU  cores  so  that  5  separate  readings  are  noted  down 

for each  tool  as  shown  in  Figure  11.  It should be noted 

that execution  of  each  tool  was perform  at  a  time  on  

installation on machine so that correct reading should be 

noted otherwise  false  reading  would be produced  by  the  

system. 

 

Fig. (11). GraphLab Execution Steps 

XIV. CONCLUSION 

Certain popular and useful tools have been studied in 

this paper. These tools were installed and Netflix Prize data 

set was used with different formatting with respect to each 

tool. The data set was executed and results were observed. 

The findings include time to complete full task and data load 

time or RMSE in some tools. There are fewer studies 

available that are based on comparative analysis which 

covers all major tools with data models and flow details with 

known Netflix Prize data-set with same Alternating Least 

Count Algorithm. This study is imperative to the companies 

or individuals who are interested to build systems which can 

provide recommendation feature with Collaborative filtering 

in terms of hardware cost, processing power needed, disk 

I/O, network overhead, maintenance, usability and 

deployments. Tools discussed in this study are all 

comprehensively usable in the industry with worthy 

community support and examples available online. Some 

tools works in Memory while others uses disk based or graph 

based approach to process data and implement fault tolerance 

with respect to architectural support and methodologies. 

Distributed processing over the nodes in clusters is easy with 

the help of these tools and every tool have specific feature 

with respect to scenarios occurred in real world.  
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