
Journal of Independent Studies and Research – Computing Volume 13 Issue 1 January 2015 1

Comparative Analysis of Collaborative Filtering

on GraphLab, MLlib and Mahout
Abdul Samad

1
, Dr. Saif-ur-Rahman

2

1,2
Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST) Karachi, Pakistan

1abdulsamad22@hotmail.com

2saif.rahman@szabist.edu.pk

Abstract—Recommendation systems are used to

recommend items or products to the user based on their

previous purchases, visits, interests, ratings, wish-lists or

reviews to develop interest and to display the accurate

and suitable items on board. Recommendation systems

are used in various online shops (E-Commerce

application) and decision making systems.

Recommendation is a particular form of information

filtering. It falls under the Data Mining and Machine

Learning. Collaborative Filtering is the key technique

used in this system. In this study, the data loading, model

generation, recommendation implementation and

accuracy of same algorithm on some major tools and

libraries (GraphLab, Mahout-Hadoop, Mahout-Spark

and MLLib) has been discussed. To serve the purpose, a

well-known algorithm Alternating Least Square ALS for

collaborative filtering was used. Netflix Prize (training)

data set was used in this research with the listed tools and

libraries. At the end of this research a factual

comparative analysis of the tools was carried out.

Keywords—Recommendation System, Machine

Learning, Collaborative filtering

I. INTRODUCTION

Recommendations make decisions easy and fruitful.

People are confused occasionally when buying variety of

items for example CDs, Books, Electronic Items, Mobile

Phones, Grocery and etc.. They need user reviews, ratings or

proper representation of the top selling items. Here,

recommendation system becomes handy which provide users

with relevant, rated or reviewed items similar to the users

searched item of interest. There are tools and libraries

available that implement accurate recommendation systems

with known algorithms which heavily use modern CPU

architecture and works with Disk or in Memory based

read/writes and designed for clusters of computers for

distributed processing of large scale data. Model generation

and Data load time of these tools are variable with respect to

their data models and efficiency of algorithms. Tools that

have been selected for this study are based on Hadoop file

system and selected works with in-memory RDD based

processing. Hadoop file system achieves fault tolerance with

the help of replication mechanism over the distributed nodes

[1]. While discussing about in-memory based processing that

is Apache Spark which is used by MLlib and Mahout, the

fault tolerance is achieved by Lineage mechanism or

recovers lost data sets over the distributed nodes [2].

Following are the approaches to achieve recommendations.

1) Collaborative filtering

2) Content based filtering

3) Hybrid Recommendations

The point of discussion in this research is collaborative

filtering and the methodologies, tools and their performance,

data models and algorithms to achieve accuracy. Some of the

tools that have been selected in this study are using iterative

algorithmic approach during execution and data model

generation. Iterative Algorithms are used to solve certain

problems in a cyclic manner to improve or boost its relative

results. It is a mathematical approach to nonlinear or at times

linear equations. It is also known as Convergent that is to

merge the results of cyclic operations with the intermediary

results of the operations performed and stops at the point

which is approximate to the given initial predictions or

approximations. Direct-method is used to solve specific

definite solution of the given equations and there are finite

steps involved in its solution [3]. In this study, single ALS

(Alternating Least Count) algorithm has been selected to be

used on tools.

II. COLLABORATIVE FILTERING

Collaborative filtering is a technique used in

recommendation systems which facilitate to produce a list of

recommended items for the user with proper representation.

In collaborative filtering, the predictions are made from users

to users’ basis or users to items basis i.e. certain user has

reviews regarding an item and the other user may also have

the same review for that item. The reviews are collaborated

and the recommendation accuracy increases as a result of this

collaboration. On the other hand, if various user rates an item

with good points then its recommendation accuracy will

increase and it is in the list of recommended items matched

with the searched items. Automatic predictions can be made

in collaborative filtering techniques by comparing the

interests of similar users to each other [4].

Journal of Independent Studies and Research – Computing Volume 13 Issue 1 January 2015 2

A. Problems

There are some problems or challenges in collaborative

filtering. Few of them are discussed below.

1) Sparsity (cold start): User to Item matrix i.e. When

new items are added in system, they have no ratings, reviews

and purchases. This cause sparsity (sparse matrix) in

recommendations and the users are confused to purchase

such items. If they belong to known brand then they have

been purchased; otherwise, marketing and comparisons are

required to make user interested in those items. No ratings,

reviews and no purchase history may damage the

recommendation accuracy and make data model sparse [5-6].

2) Scalability Issue: A Data-set and user rating increases

with time gradually which may take long processing times.

More processing power need highly configured CPU and

RAM consumption and all the clusters are so busy that extra

hardware is added at runtime to maintain the processing

accuracy which is costly and need maintenance [6].

3) Biased Ratings from users: Users rate their liked

products and brands they use and rate them on the basis of

their experiences and some of them gives low rating and

reviews to their opponents [6].

The scalability issues is the point of discussion to

increase the performance on large data-sets and to find better

tools and libraries available for these issues with the help of

an activity on local system. To produce benchmarks for the

interested communities, business use cases.

III. GRAPHLAB

GraphLab is the high performance framework designed

for distributed and parallel processing. It is an open source

project by Apache. Originally, it was designed for Machine

Learning or Data Mining task for asynchronous shared

memory distributed environment. It works in an iterative

manner. As the amount of data is growing rapidly and needs

high computing power; therefore, Multi Core CPUs, Clouds,

and Clusters are developed so that data may fit on more

than one node (Graph) and the distributive/parallel

algorithms can be applied on that large scale data. GraphLab

provides application programming interface for rapid

deployment of algorithms for distributed environment i.e.

for machine learning written in C++ which enhanced the

execution of Graphlab programs, Multithreading and disk IO

usage. Number of machine learning and data mining toolkits

are also integrated in framework [7]. TCP/IP is used for inter

communication of the clusters of computers over the

network. Message Passing Interface MPI is a standard which

is used in distributed/parallel processing to manage or launch

GraphLab programs. HDFS direct access and reads writes

are allowed in GraphLab. Every process or program in

graphLab is multithreaded so that it can use all multicores

available in modern CPU architectures. (Figure 1)

Fig. (1). GraphLab Architecture Diagram [7]

IV. DATA MODEL IN GRAPHLAB

There are vertices and edges in data graph which holds

data that is mutable. In graphLab every vertex and edge

is associated with user data. GraphLab executes programs

on vertices in parallel; each vertex can access nearby edges

and vertices and can initiate other nearby vertex

programs.GraphLab vertex programs are divided in three

main phases which is Gather Apply and Scatter (GAS)

Model also known as GAS vertex programs. In Hadoop there

are MapReduce stages through which data passed through

result calculated but in GraphLab this MapReduce stages are

mapped on Gather, Apply and Scatter phases in such way

that Gather and Scatter works similar to Map state and Apply

stage works similar to Reduce[7].

A. GAS Model

1) Gather Phase: In this phase, a gather (vertex, edge)

function in vertex class which is called on each edge linked

to nearby vertex which gathers values from each edge to the

connected vertex. Small squares (M) are the messages passed

to nearby connected active vertices along edges. White

vertices are the active vertices. Figure 2 demonstrates the

activity performed in gather phase.

Fig. (2). GAS Gather Phase

Journal of Independent Studies and Research – Computing Volume 13 Issue 1 January 2015 3

B. Apply Phase

Apply (vertex, total) function written in vertex class is

executed in this phase which apply the summation of

gathered data from the edges on nearby connected active

vertices so that it update its value. Figure 3 demonstrate the

activity performed in apply phase.

Fig. (3). GAS Apply Phase

C. Scatter Phase

Once again, scatter (vertex, edge) function written in

vertex class is called on each edge to update its neighboring

vertices from the processed value by apply phase. Figure 4

demonstrates the activity performed in scatter phase.

Fig. (4). GAS Scatter Phase

V. APACHE HADOOP

The open source Apache Hadoop framework used on

clusters of computers for distributed processing of large scale

data and designed in such a way that it scale up to many

server in live mode. Hadoop framework contains modules

such as Hadoop Common package, Hadoop Distributed File

System (HDFS used on machines in a cluster to store data

and provide high network bandwidth across the cluster),

MapReduce (Data processing model) and Yarn (Resource

manager for clusters). These abstractions are designed or

defined in such a way that Hardware failures are common

and the failures are detected at the application layer

automatically which is handled by the framework so that

delivering service availability more rather than hardware

availability.

VI. MAPREDUCE

In depth there are some other steps involved in

MapReduce task.

1) Data Input

2) Data Splitting

3) Data Mapping

4) Data Shuffling

5) Reduce

6) Result

At data input phase, large data set is inserted into the

system then it enters in Data Splitting phase where it is

divided into many data blocks which are stored on

commodity machines (Nodes) with HDFS then Map

function is applied on that data chunks where it is sorted

or shuffled (Data Shuffling phase) then Reduce function is

applied on that sorted data for processing. After that final

result, set is reconstructed from all data processed chunks.

Figure 5 below explains the data flow in Hadoop

MapReduce.

Fig. (5). Apache Hadoop

VII. APACHE MAHOUT (HADOOP)

Mahout is a set of scalable machine learning java

libraries focused on collaborative filtering, clustering and

classification subproject of Apache Lucene started in 2008.

Most of its implementation uses Apache Hadoop

(MapReduce). It provides libraries for math operations like

linear algebra and statistics. Single/Multi-Node or non-

Hadoop clusters are allowed to work with its

implementations. It supports business use-cases as it is free

under Apache software license, scalable for large data sets

Journal of Independent Studies and Research – Computing Volume 13 Issue 1 January 2015 4

that may run on single or multiple machines (nodes). Works

on the top of Hadoop implementation, that is in key-value

pairs model [8].

A. Apache Mahout (Spark based Implementation)

Previously, Mahout was a machine learning library for

Hadoop but now Mahout team works on Spark to allow

Mahout for Spark and for this purpose, they have introduce

Scala based DSL (Domain Specific Language) with algebraic

expressions added to work with Mahout. Scala Language

supports operator overloading and functional programming

which support to build distributed code with linear algebra

on Scala shell which is customized to work with Mahout to

run Spark on it with defined Mahout DSL [8].

VIII. ALTERNATING LEAST SQUARE

Alternating least square falls under the umbrella of Least

Squares and the goal of least squares is to find the

evaluation of the parameters of a function f (x) on data set

A1 , , , , , An . Least Squares method is the standard

approach to find the close solution of over-determined

systems. Over-determined systems the systems in which the

number of known equation is more than unknown equations.

Let a system have 2 unknown variables and 3 known

equations [9] as shown in figure 6.

Fig. (6). Equation: Alternating Least Square

Least Square Method is sub-divided in two parts

1) Linear Least Squares

2) Non Linear Least Squares

Further, Least Squares can be classified in weighted

least squares (WLS), alternating least squares (ALS),

ordinary least squares (OLS) and partial least squares (PLS).

IX. ALS ALGORITHM

ALS uses the sparse rating matrix R which holds the

ratings given by the users to movies. It builds a linear data

model users (U) and movies (M) low dimensional matrices

from that sparse rating matrix. Rating Matrix R is the product

of multiplication of low-rank User (U) and Movies (M) latent

factors. ALS is an iterative algorithm and it minimizes the

errors of summation every iteration. In every iteration,

algorithm fixes one of the latent factor matrixes and solve for

other by least square method and this process continues until

it converges as show in figure 7.

Fig. (7). ALS Algorithm

X. APACHE SPARK

Spark is an open source framework for data analytics on

clusters of computers. It is used for large-scale data

processing i.e. Big Data and builds on Hadoop Distributed

File System (HDFS) and it also provides advance

execution of graphs with in-memory processing and data

storage (RDD, Resilient Distributed Data-sets). It has many

advantages over MapReduce execution stages and enhances

performance up to 100 times faster than Hadoop [10].

Apache Spark process data with in-memory rather than on

disk to save IO of disk read write cost and network

bandwidth during data processing on different nodes within

the cluster of computers with multi- pass Iterative algorithms

that are required to be common on machine learning or graph

processing tasks as shown in figure 8. In Hadoop, HDFS is

an intermediate storage used to save the processed data set

for replication at the completion of every state and read that

output back in immediately to start the new state and fault

tolerant is achieved by this replication mechanism over the

machines in network. This is the overhead in between all

these stages, similarly the interactive queries, each query

have to face this network overhead and disk I/O and the

distributive file system is slow by this disk I/O but it is

required to achieve fault tolerance. In contrast to Apache

Spark, the data will be processed in Memory or cached on

disk drive that is locality of reference for faster access of data

reads. Apache Spark works on Resilient Distributive Dataset

(RDD) as HDFS in Hadoop for intermediate storage but no

overhead is created like network or disk I/O in Hadoop. Fault

tolerance is achieved in Spark by using Lineage, a

terminology which describes the fault tolerance in such a

way that on failure recomputed the lost partitions until

success at certain timeout interval. If there is no lost then no

cost for re-computation. Questions arises here that if any

memory leakages are found in any of the nodes then what to

do with the lost RDDs [2, 10].

Fig. (8). Apache Spark Work Flow

Journal of Independent Studies and Research – Computing Volume 13 Issue 1 January 2015 5

XI. MACHINE LEARNING LIBRARY (MLLIB)

MLLib is a library for machine learning algorithms and

utilities used with spark to support machine learning

problems like classification, regression, clustering,

collaborative filtering, dimensionality reduction and

optimization primitives but MLlib was used and discussed

with respect to collaborative filtering (ALS Alternating Least

Square). MLLib is a standard component of Spark which

provides machine learning primitives on Spark. MLlib

provides Application Programming Interface in Scala, Java

and Python languages currently. It executes 100x faster

programs in memory than Hadoop MapReduce, but on disk it

executes 10 times faster.

XII. NETFLIX DATA SET

To optimize or enhance the existing recommendation

algorithm of Netflix, a competition for data mining

named Netflix prize was held on large scale data set of their

own DVD rental system. The goal was to improve the

accuracy of the recommendations or predictions of users

ratings of movies data format = user ID, movie ID, ratings.

Netflix training data set consists of 2 files:

1) smallnetf lixm m.train

2) smallnetf lixm m.validate

There were some challenges in Netflix data set such

as the data volume and data limit. Data volume of this

training set is small composed of user to movie ratings which

spans of around 52M B disk size i.e., (smallnetf lixm m.train

: 44.1M Bandsmallnetf lixm m.validate : 7.4M B) which on

processing phase consumes high CPU usage so that it should

be run on modern multicore CPU architecture with sufficient

amount of RAM (min4GB). This training data set is limited

but sufficient and accurate for the prize competition activity.

Small Netflix data set must be altered according to the tool.

While using with GraphLab, both files were in space

separated and while using with Apache Mahout, they were in

tab separated.

XIII. EVALUATION

A. Installation Machine Specs

LENOVO B5400 machine with Ubuntu latest version

was used to install all the selected tools and it has Intel Core-

i5 2.50GHz processor and 8 GB of system Memory.

Prerequisites are necessary for the installation and proper

execution.

B. GraphLab Installation and Execution Steps

There is an official GIT repository of GraphLab from

which a checkout on local machine was made. Commands

listed below are used for git checkout. Before checkout, all

prerequisites for GraphLab execution were install as shown

in figure 9 below. Data set that had been used in this

execution is same as used in Apache Mahout.

 Fig. (9). GraphLab Installation and Execution Steps

C. Observations of GraphLab Execution

GraphLab execution involves Remote Procedure Call

(RPC) connections with local machine by obtaining its IP

and subnets to use Message Passing Interface (MPI) for data

flow during execution. Firstly, it establish the connection

(TCP layer) with the host machine successfully then it

creates a cluster depending on the machine connected as in

this study only one after this successful. Connection

started loading the graph from the given input files smallnetf

lixm m.train and smallnetf lixm m.validate and read it line by

line, then it display graph loading time 16.3477 seconds in

this execution which is important and vary with respect to

input parameters in execution command and CPU

architecture of the machine. It then passes the data in graph

and allocating memory for the execution and start ALS

iterations on that data in graph producing RMSE (Root Mean

Square Error) with respected time periods in seconds.

D. Apache Mahout Installation and Execution Steps

Installation of Apache Mahout required any

Linux (Ubuntu) machine with GIT installed on it to checkout

from its official GIT repository. Small Netflix train and

small Netflix validation files needed to be converted in

Tab separated user I D < Tab > item I D < Tab > Ratings

by Ubuntu console as shown in figure 10 below.

 Fig. (10). Apache Mahout Installation and Execution

Journal of Independent Studies and Research – Computing Volume 13 Issue 1 January 2015 6

E. Observations of Mahout Execution

Mahout is observed with respect to Hadoop so Map and

Reduce task are involved in this execution. When the

command is executed on console, it finds the mahout local

and Hadoop configuration directory first class path. If no

Hadoop configuration directory is defined then it runs locally

on the machine. Mahout then loads the input files smallnetf

lixm m.train and smallnetf lixm m.validate from the given

path in command and launches the Map tasks to split the data

and create jobs to process those chunks and create the item

ratings partial files by Reduce function. It merge the data in

tmp folder and completes the jobs one by one while

maintaining fault tolerance by replication in run-time and

took total time to complete 133062ms (Minutes : 2.2177).

F. GraphLab vs. Mahout Execution Differences

GraphLab and Apache Mahout Execution samples have

been taken by fixing the number of maximum iterations

at the interval of 5 and fixing lambda to 0.065 with 3

CPU cores so that 5 separate readings are noted down

for each tool as shown in Figure 11. It should be noted

that execution of each tool was perform at a time on

installation on machine so that correct reading should be

noted otherwise false reading would be produced by the

system.

Fig. (11). GraphLab Execution Steps

XIV. CONCLUSION

Certain popular and useful tools have been studied in

this paper. These tools were installed and Netflix Prize data

set was used with different formatting with respect to each

tool. The data set was executed and results were observed.

The findings include time to complete full task and data load

time or RMSE in some tools. There are fewer studies

available that are based on comparative analysis which

covers all major tools with data models and flow details with

known Netflix Prize data-set with same Alternating Least

Count Algorithm. This study is imperative to the companies

or individuals who are interested to build systems which can

provide recommendation feature with Collaborative filtering

in terms of hardware cost, processing power needed, disk

I/O, network overhead, maintenance, usability and

deployments. Tools discussed in this study are all

comprehensively usable in the industry with worthy

community support and examples available online. Some

tools works in Memory while others uses disk based or graph

based approach to process data and implement fault tolerance

with respect to architectural support and methodologies.

Distributed processing over the nodes in clusters is easy with

the help of these tools and every tool have specific feature

with respect to scenarios occurred in real world.

REFERENCES

[1] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola,

and J. M. Hellerstein. “Distributed graphlab: A

framework for machine learning and data mining in the

cloud”. In Proceedings of VLDB Endowment, 2012, vol.

5, no. 8, pp: 716-727.

[2] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M.

McCauley, M. J. Franklin, S. Shenker, and I. Stoica.

“Resilient distributed datasets: A fault-tolerant

abstraction for in-memory cluster computing”. In

Proceedings of the 9
th

 USENIX Conference on

Networked Systems Design and Implementation

(NSDI’12), 2012, pp: 2-2.

[3] Y. Saad. Iterative Methods for Sparse Linear Systems.

Society for Industrial and Applied Mathematics,

Philadelphia, PA, USA, 2
nd

edition, 2003.

[4] B. Sarwar, G. Karypis, J. Konstan and John Ried. “Item-

based collaborative filtering recommendation

algorithms”. In Proceedings of the 10
th

 International

Conference on World Wide Web, (WWW ’01), 2001, pp:

285-295.

[5] M. Grcˇar, D. Mladenicˇ, B. Fortuna and Marko

Grobelnik. “Data sparsity issues in the collaborative

filtering framework”. In Proceedings of the 7
th

International Conference on Knowledge Discovery on

the Web: Advances in Web Mining and Web Usage

Analysis (WebKDD’05), 2006, pp: 58-76.

[6] Collaborative filtering (2014), Wikimedia Foundation,

[Online]. Available:

http://en.wikipedia.org/wiki/Collaborative_filtering

[7] GraphLab Inc. Graphlab. 2014.

[8] The Apache Software Foundation. Apache mahout.

2014.

[9] G. Taka´cs and D. Tikk. “Alternating least squares for

personalized ranking”. In Proceedings of the Sixth ACM

Conference on Recommender Systems (RecSys ’12),

2012, pp: 83-90.

[10] The Apache Software Foundation. Apache spark, mllib.

2014.

