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Abstract—Graph Processing Systems are highly 

productive when it comes to graph data. While using data 

parallel approach, it could not exploit common 

characteristics of a graph computation workload. To 

address all these challenges, distributed graph processing 

frameworks were introduced which inherited both the 

properties of graph parallel systems and data parallel 

system. Usually, the standard operators which were being 

used by data parallel systems were filter, join, reduce and 

etc. while graph parallel system introduced operators 

such as sub-graph, mrTriplets and etc. In comparison 

with graph framework operators, the standard relational 

operators were too slow. Traditionally, all the 

frameworks and their benchmarks were executed over 

hard disk drive but modern storage technology has 

evolved which lead us to use Solid State Drives. Solid 

state drives are known for their lightning speed as it 

manages to retrieve and populate data using pulse. This 

paper presents an analysis of SSD by utilizing graph 

processing systems.  It also discuss the pros and cons 

faced by the Graph Processing Frameworks and by using 

TRIM support how the issue of wear leveling can be 

resolved. 

I. INTRODUCTION 

A graph database is basically an accumulation of 

vertices and edges where every vertex speaks to a substance, 

for example, an individual or business considered to be an 

edge and each edge speaks to an association or relationship 

between two vertexes. Each vertex in a graph database is 

characterized by an interesting identifier, a set of friendly 

edges and/or approaching edges and a set of properties 

communicated as key/worth sets. Each one edge is 

characterized by an exceptional identifier, a beginning spot 

and/or closure place vertices and a set of properties. Graph 

databases are appropriate for dissecting interconnections, 

which  is  the  reason  there  has  been  a  ton  of  enthusiasm 

toward utilizing graph databases to  mine information from 

online networking. Graph databases are additionally helpful 

for working with information in business trains that include 

complex connections and element pattern for example, store 

network administration, distinguishing the wellspring or 

source of an IP telephony issue. 

 

There is a need of better graph processing frameworks as 

enormous amount of data is obtained in the form of graph 

which is highly related and carries complex connections in 

between. Building frameworks that processes inconceivable 

measures of information have been made straighter forward 

by the presentation of the Map reduce, and its open-source 

usage Hadoop. These frameworks offer programmed 

adaptability to great volumes of information, programmed 

flaw tolerance and a basic programming interface based on 

actualizing. It has been perceived that these frameworks are 

not generally suitable when preparing information as a 

substantial graph. 

In this research, the authors have targeted Apache Spark 

using GraphX API which is a popular graph processing 

framework which manipulates data using data parallel and 

graph parallel approaches. One of the frameworks includes 

graph parallel operators which joins vertex, edge 

accumulations, apply changes on the properties and structure 

and move information along edges in the graph. 

All   these   frameworks   are   either calculating edge or 

vertex in memory fashion or keeping it on Disk while 

executing algorithms on large datasets. It  is  necessary  for 

the disk to play its role and store chunk of data in it  while  

the  memory  is  busy  manipulating other  data.  As soon as 

some space is available, this data is then provided to memory 

for further calculation. In this research, the disk role is being 

replaced with emerging technology known as solid state 

drive from further calculation. Solid state drive is known for 

its speed.  

II. SOLID STATE DRIVES 

Solid State Drive (SSD) has lifted the performance to 

the next level. Its design and architecture is pretty much 

similar to a memory stick which makes it different from the 

conventional hard disk drive which is operated by a read 

write head. The SSD architecture consist a flash memory and 

a controller. Basically, flash memory does not have a 

mechanical arm; it relies on a controller which is just like a 

brain to the SSD. The controller decides how to store the 

data and how to retrieve the data. Furthermore, the memory 

comprises of cells which stores the data. The cells which are 
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the core part of SSD consist of a single transistor and a 

floating gate which are used to store electron in it.  [1] 

A. Single Level Cell 

Single Level Cell (SLC) is cell type in solid state storage 

which tends to store a single bit in an each cell. Single level 

cell is constantly in one of two states as elaborated in table 1.  

 Table 1. SLC Levels [1] 

 

The state is dictated by the level of charge that is 

connected to the cell. Since there are just two decisions, zero 

or one, the condition of the cell can be deciphered rapidly 

and the shots of bit mistakes is diminished. Individual Single 

level cell memory can manage roughly 100,000 compose 

operations before disappointment. When a cell is composed 

to its capacity, the cell begins to overlook what is put away 

and information debasement can occur. 

Single level cell flash is by and large utilized as a part of 

business and mechanical applications and installed 

frameworks that oblige superior and long haul unwavering 

quality. 

 

Fig. (1). Voltage Reference for SLC [1] 

Figure 1 explains that (0) or (1) which is controlled from 

limit voltage ”Vt” of a cell, where else edge voltage is 

controlled from measure of charge which is then diverted to 

skimming door of a flash cell, setting charge on the 

skimming entryway will build the limit voltage of a cell, at 

the point when  the  edge  voltage  is  sufficiently high  

around  4  volts these  cells  will  be  perused as  

Programmed, no  charge, or edge voltage greater than 4 

volts, will affect the cell to be sensed as eradicated. 

B. Multi-Level Cell 

Multi-Level Cell (MLC) is a cell type in solid state 

storage which tends to store a two bit in an each cell as 

mentioned in table 2. 

 

 

Table 2. MLC Levels [1] 

 

Multi-Level Cell has a higher bit lapse rate than Single 

Level Cell. In fact, there are more open doors for 

confounding the cell’s state just opposite to single-level cell 

which just stores 1 bit for every cell and is constantly in one 

of two states, modified (0) or deleted (1). Multi-Level Cell 

have more than two states on the grounds that every bit in the 

cell is either customized or eradicated. Multi-Level Cell-2, 

for instance, has four states. Multi-Level Cell-3 has eight 

states and Multi Level Cell-4 has sixteen; as with Single 

Level Cell, each one state is controlled by the level of 

electrical charge that is connected to the cell. 

As a rule, the more bits the cell has, the less compose 

cycles it will have. Case in point, a 2-bit Multi Level cell is 

useful for around 3,000 to 10,000 compose operations before 

it starts to fall flat, while a 3-bit Multi Level Cell would just 

have 300 to 3,000 compose cycles. 

 

Fig. (2). Voltage Reference for MLC [1] 

Flash cell’s capacity to store charge is the reason behind 

Multi Level Cell working. Since, the delta between each one 

level has diminished, the affectability between each one level 

expanded.  In  this  way,  more  inflexibly  controlled writing 

computer programs is required to control a more exact 

measure of charge put away on the drifting entryway. 

In this way, Multi-Level Cell works in a similar fashion 

like Single Level Cell flash memory. Edge voltage “VT” is 

utilized to control condition of a flash memory and at the end 

measure of charge on the skimming entryway is the thing 

that decides the limit voltage. As shown in the above figure 

2, currently Multi Level Cell uses two bits, or 4 levels. In any 

case, it is conceivable to hold more bits. 

C. SSD Wear Leveling 

All SSD memory experiences wear, which happens in 

light of the fact that eradicating or programming a cell 

subjects it to wear because of the voltage connected. Every 

time a charge is caught in the transistor’s entryway dielectric 
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and reasons a changeless move in the cell’s attributes, which 

after various cycles, shows as a fizzled or failed cell. 

Basically, Wear leveling is a kind of process which is 

intended to augment the life of Solid State Drive [2]. Solid 

State Drive is buildup of microchips that store information 

only in blocks. Every one of these block can endure a limited 

number of system/eradicate cycles before getting to be 

questionable. For  instance,  SLC  NAND  glimmer  is  

ordinarily  appraised at  around  100,000  project/eradicate  

cycles.  Wear leveling masterminds information with the 

goal that compose/eradicate cycles are appropriated 

equitably among the majority of the pieces in the device. 

Wear leveling is regularly overseen by the SSD flash 

memory controller which utilizes a wear leveling calculation 

to figure out which physical piece to utilize every time 

information is modified [2]. There are two sorts of SSD 

Wear Leveling algorithm: dynamic and static. In Dynamic 

wear leveling, pools delete blocks and choose the block with 

the most reduced eradicate mean the following compose. 

Where as in Static wear leveling, then again, chooses the 

target obstruct with the most reduced general delete tally, 

deletes the piece if fundamental, composes new information 

to the square and guarantees that blocks of static information 

are moved when their blocks are eradicated. It is then check 

underneath a certain limit. 

Wear leveling is also overcome by Trim Support. A 

TRIM order empowers working framework to discover the 

checked pages before they are required and wipe them clean 

[3]. Cleaning these information pages already spares time 

when composition on the information pages is required 

again. To work accurately, TRIM must be upheld by both the 

solid state drive and the working framework that are being 

utilized. At the point when both the OS and the SSD help 

TRIM, individual pages can be cleaned and solid state drive 

will be educated that the pages are presently clear and can be 

composed on. This sort of cleaning and correspondence is 

the key way in keeping the drive performing to the best of its 

capacities. 

III. APACHE SPARK 

GraphX is actualized on top of Spark, a broadly utilized 

data parallel system, Like Hadoop Map reduce. A Spark 

group comprises of a solitary driver hub and numerous 

laborer hubs.  The  driver  hub  is  in  charge  of  assignment  

booking and  dispatching  while  the  laborer  hubs  are  in  

charge  of the genuine reckoning and physical information 

stockpiling. Spark gives the Resilient Distributed Dataset 

(RDD) in memory stockpiling deliberation. Resilient 

Distributed Dataset is accumulations of protests that are 

divided over a cluster [4]. Rather than the two-stage Map 

reduces topology, Spark backs general calculation (DAGs) 

by making numerous information parallel administrators on 

Resilient Distributed Dataset making it more suitable for 

communicating complex information streams [4]. 

A. GraphX 

The adaptability and execution of GraphX is taken from 

plain choices and improvements made in the physical 

execution layer. Configuration of the physical representation 

as an arrangement of joins and collections, keeping up the 

legitimate records can considerably accelerate nearby join 

and collection execution. Secondly, it minimize 

correspondence in graphs by utilizing vertex-cut 

apportioning in which edges are parceled equitably over a 

group and vertices are imitated to machines with  contiguous 

edges  [4].In  the  end,  chart  processing is ordinarily 

iterative and subsequently, a records can be built. 

1) Graph Parallel Systems: The expanding scale and 

need of graph organized information has prompted the rise of 

a scope of graph parallel frameworks or graph parallel 

systems. Every framework is fabricated around a variety of 

the graph parallel deliberation which comprises of a property 

diagram and a vertex-program that runs on every vertex in 

the chart and can interface with nearby vertex-programs 

through messages. Each instance of the vertex-system can 

read and adjust its vertex property and the properties on 

adjoining edges and in some cases, even the properties on 

nearby vertices. Generally, frameworks embrace the mass 

synchronous execution model in which all vertex-projects 

run simultaneously in a grouping of super steps working on 

the neighboring vertex-system state or on messages from the 

past super-step. [5] Since it guarantees deterministic 

execution, disentangles debugging, what’s more that 

empowers deficiency tolerance. [6] 

2) Graph Parallel   Operator:   The edge between graph 

parallel and data parallel lies between its operators unlike 

traditional operators. Graph parallel system consists of such 

operators which specialize in utilizing and exploiting a 

graph. The GraphX framework uncovers the standard 

information parallel administrators which are found in 

contemporary data stream frameworks. The unary 

administrators channel, outline, reduce by key. Furthermore, 

creates another gathering with the records uprooted, changed 

and then again totaled. The paired administrator left join 

performs a standard left external equijoin by key. Two of the 

operators which are map and filter are totally data parallel 

without obliging any information development on the other 

hand correspond [4]. Then again reduce by key and left join 

administrators may require generous information 

development relying upon how the data is distributed. The 

Graph administrator builds a property diagram from vertex 

and edge accumulations. In numerous applications, the 

vertex gathering may contain copy vertex properties or may 

not contain properties for vertices in the edge gathering, case 

in point when working with web information; web-

connections may indicate missing pages or pages may have 

been viewed various times [4]. While the Graph operator 

creates a chart, arranged  perspective of  accumulations, the  

vertices,  edges, and  triplets  produce  gathering  focused  

perspectives  of  a chart, the vertices and edges graph 
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deconstruct the property chart into the comparing vertex and 

edge accumulations. The gathering perspectives are utilized 

when registering totals breaking down the aftereffects of 

chart reckoning or when sparing diagrams to outside data 

stores. By combining properties along edges, the triplet’s 

administrator empowers an extensive variety of graph 

reckoning. For instance, the organization of the triplets and 

data parallel channel administrators can be utilized to 

concentrate edges that compass two spaces or join clients 

with diverse investments. Moreover, the triplet’s 

administrator is utilized to develop the other graph parallel 

administrators which are sub graphs and mrTriplets, mapv 

and mape administrators change the vertex and edge 

properties individually and furnish a proportional payback 

graph. The guide UDF gave to mapv and mape can just give 

quality esteem and cannot alter the structure. 

B. Resilient Distributed Dataset 

Spark is implemented utilizing Scala around the idea of 

Resilient Distributed Datasets (RDD) and gives activities/ 

changes on top of RDD; formally a RDD was perused, divide 

accumulation of records. RDD must be made through 

deterministic operations on either information in steady 

storage or different RDDs. This is the sacred vessel of what a 

RDD is. RDD are a changeless versatile dispersed 

accumulation of records which can be put away in the 

unstable memory or in a persevering storage HDFS, Hbase 

and can be changed over into an alternate RDD through a 

percentage of the changes, an activity like tally can likewise 

be connected on a RDD. [6] At the point when the memory is 

not sufficient enough for the information to fit in, it can be 

either spilled to the drive or is simply left to be reproduced 

upon appeal for the same; likewise a RDD can be stored in 

memory for as often as possible reserved information. Let’s 

say distinctive questions are run on the same set of 

information repeatedly, this specific information can be kept 

in memory for better execution times. 

1) Partitioning: Graph parallel calculation  requires  

every  vertex  or  edge  to  be  prepared in  the  connection  of  

its  neighborhood.  In addition, each change relies upon the 

after effect of conveyed joins between vertices and edges [7].  

As an outcome, indexing and information format are 

paramount steps in attaining a productive dispersed 

execution. Since, the graph structure portrays data 

development; dispersed graph processing frameworks 

depend on graph parceling and proficient graph storage to 

minimize correspondence and capacity overhead. It also 

guarantees adjusted computation. Usually graph is 

partitioned into two segments which either edge cut or vertex 

cut. 

2) Edge Cut:  An edge-slice interestingly assigns vertex 

to machines while permitting edges to compass crosswise 

over machines. Below figure 3 illustrates edge cut. 

 

Fig. (3). Edge Cut [7] 

The  correspondence and  capacity  overhead of  an  

edge-cut is  specifically corresponding to  the  quantity  of  

edges  that are  cut [7].  Subsequently, correspondence 

overhead can be decreased and guarantee adjusted 

computation by minimizing both the quantity of cut edges 

and the number of vertices assigned  out  to  the  most  

stacked  machine,  then  again  for most expensive scale 

genuine graph, building an ideal edge- cut can be costly [7]. 

As an outcome, numerous graph reckoning frameworks have 

embraced the procedure of randomly disjointed vertices over 

the cluster. 

3) Vertex Cut:  Vertex Cut is based on distributing nodes 

over the machines. It uniformly assigns out edges to 

machines and permit vertices to compass over numerous 

machines. Below figure 4 illustrates edge cut. 

 

Fig .(4). Vertex  Cut  [7] 

The correspondence and capacity overhead of a vertex-

slice is straightforwardly corresponding to the whole of the 

quantity of machines crossed by every vertex. In this way, 

correspondence overhead can be decreased and guarantee 

adjusted calculation by uniformly allocating edges to 

machines in way that minimizes the quantity of machines 

crossed by every vertex [7]. Developing ideal vertex-cuts is 

likewise restrictively lavish on large scale graphs. The least 

difficult methodology is to utilize a hash capacity to 

arbitrarily appoint edges to machines through a 

straightforward examination. It can be demonstrated that for 

the force law degree appropriations found in real graphs, 

arbitrary vertex-cuts can be requested to size more 

productive than arbitrary edge-cuts. 

C. Representing Vertex Cut in Tabular Format 

Vertex cut representation in GraphX resilient scattered 

graph data structure is achieved using three unordered evenly 

parceled tables actualized as Spark Resilient Distributed 
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Dataset. Below is the figure 5 in which there is a 

representation of tabular format for vertex cut. 

 

Fig. (5). Tabular representation of vertex cut [7] 

1) Edge table: Edge table parameters are PID, src, dst, 

and information. It stores the adjacency structure and edge 

information. Every edge is spoken to as a tuple comprising of 

the source vertex id, terminus vertex id, client characterized 

information and a virtual part identifier PID [7]. It must be 

noted that the edge table contains just the vertex ids and not 

the vertex information. The edge table is mapped by the PID. 

2) Vertex Data Table: Edge table parameters are id and 

data. It stores the vertex information as a vertex (id, 

information) sets. The vertex information table is ordered 

and divided by the vertex id.  

3) Vertex Map:  Edge table parameters are (id, pid). It 

gives a mapping from the id of a vertex to the ids of the 

virtual segments that contain contiguous edges. Case in 

point, on the grounds that vertex (A) is connected with edges 

in all parts, there are three tuples identified with (A) in the 

vertex map table [6]. The vertex guide table is apportioned 

by the vertex id. 

IV. EXPERIMENT 

A. Experimental Setup 

The method that has been proposed in this research is 

tested by performing experiments. A setup is created for 

testing proposed method. The experiment is conducted on 

Dell latitude E6510 machine with a core i5 Intel Processor, 

4GB of RAM and SSD Liteon Model LCT-256M3S capacity 

256 GB and hard disk drive Samsung 500 GB. 

B. Data Set 

Live Journal dataset is an online community which is 

free with a member count of more than 10 million members. 

Live journal helps member to maintain their journals and 

individual blogs. It also allows people to define which 

member in this community is their friend.  Below are the 

details of the dataset mentioned in figure 6. 

The twitter dataset consists of circles which includes 

profile that can be termed as feature. This dataset was 

basically crawled out from a public source. It consist of 

81306 Nodes and 1768149 edges 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. (6). Details of Selected Datasets 

C. Hard Disk Drive Specs 

• Hard drive interface: Serial ATA II 

• Hard drive capacity: 500 GB 

• Hard drive speed: 5400 RPM 

• Drive device, buffer size: 8 MB 

• Hard disk average seek time: 12 ms 

• Average latency: 5.6 ms 

• Drive ready time: 4 s 

 

D. Solid State Drive Specs 

• Solid State drive interface: Serial ATA 6 GB/s compatible 

with SATA 3 GB/s and SATA 1.5G/s 

• Solid State drive capacity: 256 GB 

• Solid State drive Controller:  Marvel 88SS9174 Flash      

controller 

• Flash Memory: MLC 

• Seq. Read: 520 MB/s 

• Seq. Write: 430 MB/s 

• TRIM Command: Supports 
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E. Hard Disk Drive Benchmark 

For Bench marking, a Read Write test for Hard Disk 

Drive of 500MB was conducted; a test data was used on 

which below result was obtained. 

While bench marking, hard disk drive on write 

operation, it  initiated  at  around  150MB  per  second  and  

then  settled at  84MB  per  second as seen in figure 7,  while  

on  read  operation  it  started from 35MB per second and 

then stabilized at 84MB per second. The reason behind slow 

read initiation is when the read operation starts, the head of 

drive needed to move towards the starting block which takes 

time but, when performing write operation, it instantly 

started to write where the head was because the partition was 

kept empty. 

F.  Solid State Drive Benchmark 

For Bench marking, a Read Write test for Solid State 

Drive of 500MB was conducted; a test data was used on 

which the below result was obtained. 

While bench marking, solid state drive on write 

operation, it initiated at around 250MB per second. In figure 

8, it can be noticed that  on  write  operation, SSD  is  not  

working on constant speed because SSD operates on block 

writing and there can be cells between this process which 

consist of some other data, so  shifting those  cells  and  

continuing the  operation might cause  variation in speed. 

While on read operation, it started from 210MB per second 

and then stabilized at 265MB per second. The reason why it 

reads so fast is because of the nature of SSD. SSD read and 

write data using electronic signal which will always move 

fast as compared to the read write head.  

G. Page Rank Algorithm 

Page rank is a numeric esteem that elaborates how 

essential a page is on the web. It is assumed that when one 

page connects to an alternate page, it is successfully making 

a choice for the other page. The more votes that are thrown 

for a page, the more imperative the page must be; likewise’ 

the significance of the page that is making the choice decides 

how essential the vote itself is. Page rank computes a page’s 

imperativeness from the votes cast for it. How imperative 

each vote is, considered when a page’s Page rank is 

computed. In terms of graph, it calculates ranking of each 

node present in the graph. The initial values for all vertexes 

are set the same and then it repeatedly updates the formula to 

get the vertex rank converge. Since, it is required to execute 

the entire algorithm on Disk rather than doing it in a 

traditional way of going on memory, the storage levels were 

customized within the code so that the edge and vertex are 

kept on Disk. Furthermore, the recent vertex cut were cached 

to give better performance while execution. The cache part 

was removed so that on every turn, Disk is consumed and a 

clearer picture of disk consumption can be obtained. 

Thenceforth, for every resilient distributed dataset, the 

storage level was changed to disk so that after each vertex 

and edge resilient distributed dataset is calculated. It kept on 

disk and then called from disk. Below is the customized code 

for page rank algorithm which is kept in Analytics file for 

Scala.  

val partitionStrategy: 

Option[PartitionStrategy] = 

options.remove("partStrategy") 

.map(PartitionStrategy.fromString(_)) 

val  

edgeStorageLevel = 

options.remove("edgeStorageLevel") 

.map(StorageLevel.fromString(_)) 

.getOrElse(StorageLevel.DISK_ONLY) 

val vertexStorageLevel = 

options.remove("vertexStorageLevel") 

.map(StorageLevel.fromString(_)) 

.getOrElse(StorageLevel.DISK_ONLY) 

taskType  match { 

case  "pagerank"  => 

val tol =  options.remove("tol") 

.map(_.toFloat).getOrElse(0.001F) 

val  outFname = 

options.remove("output").getOrElse(

"") 

val  numIterOpt  = 

options.remove("numIter").map(_.toI

nt) 

options.foreach  { 

case (opt,  _) =>  throw  new 

IllegalArgumentException("Inv

alid option:  " +  opt) 

} 
println("=======================") 

println("|   PageRankMod  |") 

println("=======================") val 

sc =  new 

SparkContext(conf.setAppName("PageR

ank(" 
+  fname  +  ")")) 

val  graph  = 

GraphLoader.edgeListFile(sc,  fname, 

numEdgePartitions =  numEPart, 

edgeStorageLevel =  

edgeStorageLevel, 

vertexStorageLevel = 

vertexStorageLeve

l) 

.partitionBy(EdgePartition2D) 

println("GRAPHX:  Number   of vertices  " + 

graph.vertices.count) 

println("GRAPHX:  Number   of  edges  "  + 

graph.edges.count) 

val pr =  (numIterOpt  match { 

case  Some(numIter)  => 

PageRank.run(graph, 

numIter) 
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case None   => 

PageRank.runUntilConvergence(grap

h, tol) 

}).vertices.cache() 

println("GRAPHX:  Total rank:  "  + 

pr.map(_._2).reduce(_ +  _)) 

if (!outFname.isEmpty)  { 

logWarning("Saving pageranks of  

pages to " +  outFname) 

pr.map {  case (id, r) =>  id +  "\t" +  r 

}.saveAsTextFile(outFname) 

} 

sc.stop() 

 

 

 

 
Fig. (7). Hard Disk Benchmark 

 

 
 
Fig. (8). SSD Benchmark  

 

H. GraphX Shuffle Write Benchmark 
 

Unlike Hadoop, Sparke Map Tasks write the output 

specifically to disk drive.  There is no utilization of an in 

memory storage.  Each one  Map  Task  composes  the  same                                                                                                          

number  of  mix  records  as  the  quantity  of  Reduce  Task. 

It writes one shuffle file for one task. Livejournal Dataset 

was  used  which  was  partitioned from  1GB  to  100MB  on 

which this operation is performed, the dataset was stored on 

distributed file system Hadoop and the results were carried 

out on Spark using GraphX api, on page rank algorithm the 

dataset was executed. 
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Fig. (9). SSD vs. HDD Shuffle Write GraphX Livejournal 

In Figure 9, it can be observed how solid state drive has 

outclassed hard disk drive. On 205MB per second shuffle 

write, it just took SSD around 61 minutes while performing 

the same operation over HDD it took 4 hours and 9 minutes. 

From the above results, it can be noted that the potential of 

graph processing framework and it can exploit the nature of 

solid state drive.  

Twitter Dataset was used on which this operation is 

performed. The dataset was stored on distributed file system 

Hadoop  and  the  results  were  carried  out  on  Spark  using 

GraphX api, on page rank algorithm the dataset was 

executed. 

 

 

 

 

 

 

Fig. (10). SSD vs. HDD Shuffle Write GraphX Twitter 

In Figure 10, it can be observe how hard disk drive has 

outclassed solid state drive. On 121MB per second shuffle 

write, it just took SSD 61 minutes while performing the same 

operation over HDD it took 4 hours and 9 minutes. From the 

above results, the potential of graph processing framework 

can be commemorated and it can exploit the nature of solid 

state drive. 

At long last, a SSD will utilize one of two interface 

advances: SATA 3 GB/s (likewise promoted as SATA 2 or 

SATA II), or the fresher and quicker SATA 6 GB/s 

(otherwise known as SATA 3 or SATA III). Drives with the 

more advanced interface are perfect with machines equipped 

with more established engineering and the other way around. 

Yet a SATA 6gb/s drive will convey its best execution just 

on the off chance that its joined with a SATA 6gb/s interface. 

V. CONCLUSION AND FUTURE WORK 

Although SSD has its own advantages over hard disk 

drive but still there are area’s which needs to be improved 

while working with solid state drives. If benchmarks are 

taken into consideration, no doubt SSD is incomparable with 

hard disk drive but if write operations of SSD is observe 

closely, it still requires optimization. While observing Graph 

Processing framework on these storage mediums, the results 

were not as expected on all datasets. When page rank 

algorithm was executed on live journal dataset, SSD 

outclassed HDD but on twitter dataset results came out to be 

opposite. At this level it can be concluded that solid state 

drives still lacks consistency while performing write  

operations,  getting  specific to  graph  frameworks, SSD 

does not outclassed HDD on all datasets. 

This section focuses on related work in SSD 

optimization. There still exist problems in SSD while 

performing write operation as shown in Fig 9. The write 

operation performed by SSD still lacks consistency; 

however, read operations are consistent. Furthermore, SSD 

does not perform consistently on all datasets. It can be 

clearly observed in Fig 10 where hard disk drive has 

outclassed SSD. 
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