
Journal of Independent Studies and Research – Computing Volume 13 Issue 1 January 2015 27

Analysis of SSD Utilization by Graph Processing

Systems
Haider Qutbuddin

1
, Dr. Saif-ur-Rahman

2

1,2
Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST) Karachi, Pakistan

1
qutbuddin.haider@yahoo.com

2
saif.rahman@szabist.edu.pk

Abstract—Graph Processing Systems are highly

productive when it comes to graph data. While using data

parallel approach, it could not exploit common

characteristics of a graph computation workload. To

address all these challenges, distributed graph processing

frameworks were introduced which inherited both the

properties of graph parallel systems and data parallel

system. Usually, the standard operators which were being

used by data parallel systems were filter, join, reduce and

etc. while graph parallel system introduced operators

such as sub-graph, mrTriplets and etc. In comparison

with graph framework operators, the standard relational

operators were too slow. Traditionally, all the

frameworks and their benchmarks were executed over

hard disk drive but modern storage technology has

evolved which lead us to use Solid State Drives. Solid

state drives are known for their lightning speed as it

manages to retrieve and populate data using pulse. This

paper presents an analysis of SSD by utilizing graph

processing systems. It also discuss the pros and cons

faced by the Graph Processing Frameworks and by using

TRIM support how the issue of wear leveling can be

resolved.

I. INTRODUCTION

A graph database is basically an accumulation of

vertices and edges where every vertex speaks to a substance,

for example, an individual or business considered to be an

edge and each edge speaks to an association or relationship

between two vertexes. Each vertex in a graph database is

characterized by an interesting identifier, a set of friendly

edges and/or approaching edges and a set of properties

communicated as key/worth sets. Each one edge is

characterized by an exceptional identifier, a beginning spot

and/or closure place vertices and a set of properties. Graph

databases are appropriate for dissecting interconnections,

which is the reason there has been a ton of enthusiasm

toward utilizing graph databases to mine information from

online networking. Graph databases are additionally helpful

for working with information in business trains that include

complex connections and element pattern for example, store

network administration, distinguishing the wellspring or

source of an IP telephony issue.

There is a need of better graph processing frameworks as

enormous amount of data is obtained in the form of graph

which is highly related and carries complex connections in

between. Building frameworks that processes inconceivable

measures of information have been made straighter forward

by the presentation of the Map reduce, and its open-source

usage Hadoop. These frameworks offer programmed

adaptability to great volumes of information, programmed

flaw tolerance and a basic programming interface based on

actualizing. It has been perceived that these frameworks are

not generally suitable when preparing information as a

substantial graph.

In this research, the authors have targeted Apache Spark

using GraphX API which is a popular graph processing

framework which manipulates data using data parallel and

graph parallel approaches. One of the frameworks includes

graph parallel operators which joins vertex, edge

accumulations, apply changes on the properties and structure

and move information along edges in the graph.

All these frameworks are either calculating edge or

vertex in memory fashion or keeping it on Disk while

executing algorithms on large datasets. It is necessary for

the disk to play its role and store chunk of data in it while

the memory is busy manipulating other data. As soon as

some space is available, this data is then provided to memory

for further calculation. In this research, the disk role is being

replaced with emerging technology known as solid state

drive from further calculation. Solid state drive is known for

its speed.

II. SOLID STATE DRIVES

Solid State Drive (SSD) has lifted the performance to

the next level. Its design and architecture is pretty much

similar to a memory stick which makes it different from the

conventional hard disk drive which is operated by a read

write head. The SSD architecture consist a flash memory and

a controller. Basically, flash memory does not have a

mechanical arm; it relies on a controller which is just like a

brain to the SSD. The controller decides how to store the

data and how to retrieve the data. Furthermore, the memory

comprises of cells which stores the data. The cells which are

Journal of Independent Studies and Research – Computing Volume 13 Issue 1 January 2015 28

the core part of SSD consist of a single transistor and a

floating gate which are used to store electron in it. [1]

A. Single Level Cell

Single Level Cell (SLC) is cell type in solid state storage

which tends to store a single bit in an each cell. Single level

cell is constantly in one of two states as elaborated in table 1.

 Table 1. SLC Levels [1]

The state is dictated by the level of charge that is

connected to the cell. Since there are just two decisions, zero

or one, the condition of the cell can be deciphered rapidly

and the shots of bit mistakes is diminished. Individual Single

level cell memory can manage roughly 100,000 compose

operations before disappointment. When a cell is composed

to its capacity, the cell begins to overlook what is put away

and information debasement can occur.

Single level cell flash is by and large utilized as a part of

business and mechanical applications and installed

frameworks that oblige superior and long haul unwavering

quality.

Fig. (1). Voltage Reference for SLC [1]

Figure 1 explains that (0) or (1) which is controlled from

limit voltage ”Vt” of a cell, where else edge voltage is

controlled from measure of charge which is then diverted to

skimming door of a flash cell, setting charge on the

skimming entryway will build the limit voltage of a cell, at

the point when the edge voltage is sufficiently high

around 4 volts these cells will be perused as

Programmed, no charge, or edge voltage greater than 4

volts, will affect the cell to be sensed as eradicated.

B. Multi-Level Cell

Multi-Level Cell (MLC) is a cell type in solid state

storage which tends to store a two bit in an each cell as

mentioned in table 2.

Table 2. MLC Levels [1]

Multi-Level Cell has a higher bit lapse rate than Single

Level Cell. In fact, there are more open doors for

confounding the cell’s state just opposite to single-level cell

which just stores 1 bit for every cell and is constantly in one

of two states, modified (0) or deleted (1). Multi-Level Cell

have more than two states on the grounds that every bit in the

cell is either customized or eradicated. Multi-Level Cell-2,

for instance, has four states. Multi-Level Cell-3 has eight

states and Multi Level Cell-4 has sixteen; as with Single

Level Cell, each one state is controlled by the level of

electrical charge that is connected to the cell.

As a rule, the more bits the cell has, the less compose

cycles it will have. Case in point, a 2-bit Multi Level cell is

useful for around 3,000 to 10,000 compose operations before

it starts to fall flat, while a 3-bit Multi Level Cell would just

have 300 to 3,000 compose cycles.

Fig. (2). Voltage Reference for MLC [1]

Flash cell’s capacity to store charge is the reason behind

Multi Level Cell working. Since, the delta between each one

level has diminished, the affectability between each one level

expanded. In this way, more inflexibly controlled writing

computer programs is required to control a more exact

measure of charge put away on the drifting entryway.

In this way, Multi-Level Cell works in a similar fashion

like Single Level Cell flash memory. Edge voltage “VT” is

utilized to control condition of a flash memory and at the end

measure of charge on the skimming entryway is the thing

that decides the limit voltage. As shown in the above figure

2, currently Multi Level Cell uses two bits, or 4 levels. In any

case, it is conceivable to hold more bits.

C. SSD Wear Leveling

All SSD memory experiences wear, which happens in

light of the fact that eradicating or programming a cell

subjects it to wear because of the voltage connected. Every

time a charge is caught in the transistor’s entryway dielectric

Journal of Independent Studies and Research – Computing Volume 13 Issue 1 January 2015 29

and reasons a changeless move in the cell’s attributes, which

after various cycles, shows as a fizzled or failed cell.

Basically, Wear leveling is a kind of process which is

intended to augment the life of Solid State Drive [2]. Solid

State Drive is buildup of microchips that store information

only in blocks. Every one of these block can endure a limited

number of system/eradicate cycles before getting to be

questionable. For instance, SLC NAND glimmer is

ordinarily appraised at around 100,000 project/eradicate

cycles. Wear leveling masterminds information with the

goal that compose/eradicate cycles are appropriated

equitably among the majority of the pieces in the device.

Wear leveling is regularly overseen by the SSD flash

memory controller which utilizes a wear leveling calculation

to figure out which physical piece to utilize every time

information is modified [2]. There are two sorts of SSD

Wear Leveling algorithm: dynamic and static. In Dynamic

wear leveling, pools delete blocks and choose the block with

the most reduced eradicate mean the following compose.

Where as in Static wear leveling, then again, chooses the

target obstruct with the most reduced general delete tally,

deletes the piece if fundamental, composes new information

to the square and guarantees that blocks of static information

are moved when their blocks are eradicated. It is then check

underneath a certain limit.

Wear leveling is also overcome by Trim Support. A

TRIM order empowers working framework to discover the

checked pages before they are required and wipe them clean

[3]. Cleaning these information pages already spares time

when composition on the information pages is required

again. To work accurately, TRIM must be upheld by both the

solid state drive and the working framework that are being

utilized. At the point when both the OS and the SSD help

TRIM, individual pages can be cleaned and solid state drive

will be educated that the pages are presently clear and can be

composed on. This sort of cleaning and correspondence is

the key way in keeping the drive performing to the best of its

capacities.

III. APACHE SPARK

GraphX is actualized on top of Spark, a broadly utilized

data parallel system, Like Hadoop Map reduce. A Spark

group comprises of a solitary driver hub and numerous

laborer hubs. The driver hub is in charge of assignment

booking and dispatching while the laborer hubs are in

charge of the genuine reckoning and physical information

stockpiling. Spark gives the Resilient Distributed Dataset

(RDD) in memory stockpiling deliberation. Resilient

Distributed Dataset is accumulations of protests that are

divided over a cluster [4]. Rather than the two-stage Map

reduces topology, Spark backs general calculation (DAGs)

by making numerous information parallel administrators on

Resilient Distributed Dataset making it more suitable for

communicating complex information streams [4].

A. GraphX

The adaptability and execution of GraphX is taken from

plain choices and improvements made in the physical

execution layer. Configuration of the physical representation

as an arrangement of joins and collections, keeping up the

legitimate records can considerably accelerate nearby join

and collection execution. Secondly, it minimize

correspondence in graphs by utilizing vertex-cut

apportioning in which edges are parceled equitably over a

group and vertices are imitated to machines with contiguous

edges [4].In the end, chart processing is ordinarily

iterative and subsequently, a records can be built.

1) Graph Parallel Systems: The expanding scale and

need of graph organized information has prompted the rise of

a scope of graph parallel frameworks or graph parallel

systems. Every framework is fabricated around a variety of

the graph parallel deliberation which comprises of a property

diagram and a vertex-program that runs on every vertex in

the chart and can interface with nearby vertex-programs

through messages. Each instance of the vertex-system can

read and adjust its vertex property and the properties on

adjoining edges and in some cases, even the properties on

nearby vertices. Generally, frameworks embrace the mass

synchronous execution model in which all vertex-projects

run simultaneously in a grouping of super steps working on

the neighboring vertex-system state or on messages from the

past super-step. [5] Since it guarantees deterministic

execution, disentangles debugging, what’s more that

empowers deficiency tolerance. [6]

2) Graph Parallel Operator: The edge between graph

parallel and data parallel lies between its operators unlike

traditional operators. Graph parallel system consists of such

operators which specialize in utilizing and exploiting a

graph. The GraphX framework uncovers the standard

information parallel administrators which are found in

contemporary data stream frameworks. The unary

administrators channel, outline, reduce by key. Furthermore,

creates another gathering with the records uprooted, changed

and then again totaled. The paired administrator left join

performs a standard left external equijoin by key. Two of the

operators which are map and filter are totally data parallel

without obliging any information development on the other

hand correspond [4]. Then again reduce by key and left join

administrators may require generous information

development relying upon how the data is distributed. The

Graph administrator builds a property diagram from vertex

and edge accumulations. In numerous applications, the

vertex gathering may contain copy vertex properties or may

not contain properties for vertices in the edge gathering, case

in point when working with web information; web-

connections may indicate missing pages or pages may have

been viewed various times [4]. While the Graph operator

creates a chart, arranged perspective of accumulations, the

vertices, edges, and triplets produce gathering focused

perspectives of a chart, the vertices and edges graph

Journal of Independent Studies and Research – Computing Volume 13 Issue 1 January 2015 30

deconstruct the property chart into the comparing vertex and

edge accumulations. The gathering perspectives are utilized

when registering totals breaking down the aftereffects of

chart reckoning or when sparing diagrams to outside data

stores. By combining properties along edges, the triplet’s

administrator empowers an extensive variety of graph

reckoning. For instance, the organization of the triplets and

data parallel channel administrators can be utilized to

concentrate edges that compass two spaces or join clients

with diverse investments. Moreover, the triplet’s

administrator is utilized to develop the other graph parallel

administrators which are sub graphs and mrTriplets, mapv

and mape administrators change the vertex and edge

properties individually and furnish a proportional payback

graph. The guide UDF gave to mapv and mape can just give

quality esteem and cannot alter the structure.

B. Resilient Distributed Dataset

Spark is implemented utilizing Scala around the idea of

Resilient Distributed Datasets (RDD) and gives activities/

changes on top of RDD; formally a RDD was perused, divide

accumulation of records. RDD must be made through

deterministic operations on either information in steady

storage or different RDDs. This is the sacred vessel of what a

RDD is. RDD are a changeless versatile dispersed

accumulation of records which can be put away in the

unstable memory or in a persevering storage HDFS, Hbase

and can be changed over into an alternate RDD through a

percentage of the changes, an activity like tally can likewise

be connected on a RDD. [6] At the point when the memory is

not sufficient enough for the information to fit in, it can be

either spilled to the drive or is simply left to be reproduced

upon appeal for the same; likewise a RDD can be stored in

memory for as often as possible reserved information. Let’s

say distinctive questions are run on the same set of

information repeatedly, this specific information can be kept

in memory for better execution times.

1) Partitioning: Graph parallel calculation requires

every vertex or edge to be prepared in the connection of

its neighborhood. In addition, each change relies upon the

after effect of conveyed joins between vertices and edges [7].

As an outcome, indexing and information format are

paramount steps in attaining a productive dispersed

execution. Since, the graph structure portrays data

development; dispersed graph processing frameworks

depend on graph parceling and proficient graph storage to

minimize correspondence and capacity overhead. It also

guarantees adjusted computation. Usually graph is

partitioned into two segments which either edge cut or vertex

cut.

2) Edge Cut: An edge-slice interestingly assigns vertex

to machines while permitting edges to compass crosswise

over machines. Below figure 3 illustrates edge cut.

Fig. (3). Edge Cut [7]

The correspondence and capacity overhead of an

edge-cut is specifically corresponding to the quantity of

edges that are cut [7]. Subsequently, correspondence

overhead can be decreased and guarantee adjusted

computation by minimizing both the quantity of cut edges

and the number of vertices assigned out to the most

stacked machine, then again for most expensive scale

genuine graph, building an ideal edge- cut can be costly [7].

As an outcome, numerous graph reckoning frameworks have

embraced the procedure of randomly disjointed vertices over

the cluster.

3) Vertex Cut: Vertex Cut is based on distributing nodes

over the machines. It uniformly assigns out edges to

machines and permit vertices to compass over numerous

machines. Below figure 4 illustrates edge cut.

Fig .(4). Vertex Cut [7]

The correspondence and capacity overhead of a vertex-

slice is straightforwardly corresponding to the whole of the

quantity of machines crossed by every vertex. In this way,

correspondence overhead can be decreased and guarantee

adjusted calculation by uniformly allocating edges to

machines in way that minimizes the quantity of machines

crossed by every vertex [7]. Developing ideal vertex-cuts is

likewise restrictively lavish on large scale graphs. The least

difficult methodology is to utilize a hash capacity to

arbitrarily appoint edges to machines through a

straightforward examination. It can be demonstrated that for

the force law degree appropriations found in real graphs,

arbitrary vertex-cuts can be requested to size more

productive than arbitrary edge-cuts.

C. Representing Vertex Cut in Tabular Format

Vertex cut representation in GraphX resilient scattered

graph data structure is achieved using three unordered evenly

parceled tables actualized as Spark Resilient Distributed

Journal of Independent Studies and Research – Computing Volume 13 Issue 1 January 2015 31

Dataset. Below is the figure 5 in which there is a

representation of tabular format for vertex cut.

Fig. (5). Tabular representation of vertex cut [7]

1) Edge table: Edge table parameters are PID, src, dst,

and information. It stores the adjacency structure and edge

information. Every edge is spoken to as a tuple comprising of

the source vertex id, terminus vertex id, client characterized

information and a virtual part identifier PID [7]. It must be

noted that the edge table contains just the vertex ids and not

the vertex information. The edge table is mapped by the PID.

2) Vertex Data Table: Edge table parameters are id and

data. It stores the vertex information as a vertex (id,

information) sets. The vertex information table is ordered

and divided by the vertex id.

3) Vertex Map: Edge table parameters are (id, pid). It

gives a mapping from the id of a vertex to the ids of the

virtual segments that contain contiguous edges. Case in

point, on the grounds that vertex (A) is connected with edges

in all parts, there are three tuples identified with (A) in the

vertex map table [6]. The vertex guide table is apportioned

by the vertex id.

IV. EXPERIMENT

A. Experimental Setup

The method that has been proposed in this research is

tested by performing experiments. A setup is created for

testing proposed method. The experiment is conducted on

Dell latitude E6510 machine with a core i5 Intel Processor,

4GB of RAM and SSD Liteon Model LCT-256M3S capacity

256 GB and hard disk drive Samsung 500 GB.

B. Data Set

Live Journal dataset is an online community which is

free with a member count of more than 10 million members.

Live journal helps member to maintain their journals and

individual blogs. It also allows people to define which

member in this community is their friend. Below are the

details of the dataset mentioned in figure 6.

The twitter dataset consists of circles which includes

profile that can be termed as feature. This dataset was

basically crawled out from a public source. It consist of

81306 Nodes and 1768149 edges

Fig. (6). Details of Selected Datasets

C. Hard Disk Drive Specs

• Hard drive interface: Serial ATA II

• Hard drive capacity: 500 GB

• Hard drive speed: 5400 RPM

• Drive device, buffer size: 8 MB

• Hard disk average seek time: 12 ms

• Average latency: 5.6 ms

• Drive ready time: 4 s

D. Solid State Drive Specs

• Solid State drive interface: Serial ATA 6 GB/s compatible

with SATA 3 GB/s and SATA 1.5G/s

• Solid State drive capacity: 256 GB

• Solid State drive Controller: Marvel 88SS9174 Flash

controller

• Flash Memory: MLC

• Seq. Read: 520 MB/s

• Seq. Write: 430 MB/s

• TRIM Command: Supports

Journal of Independent Studies and Research – Computing Volume 13 Issue 1 January 2015 32

E. Hard Disk Drive Benchmark

For Bench marking, a Read Write test for Hard Disk

Drive of 500MB was conducted; a test data was used on

which below result was obtained.

While bench marking, hard disk drive on write

operation, it initiated at around 150MB per second and

then settled at 84MB per second as seen in figure 7, while

on read operation it started from 35MB per second and

then stabilized at 84MB per second. The reason behind slow

read initiation is when the read operation starts, the head of

drive needed to move towards the starting block which takes

time but, when performing write operation, it instantly

started to write where the head was because the partition was

kept empty.

F. Solid State Drive Benchmark

For Bench marking, a Read Write test for Solid State

Drive of 500MB was conducted; a test data was used on

which the below result was obtained.

While bench marking, solid state drive on write

operation, it initiated at around 250MB per second. In figure

8, it can be noticed that on write operation, SSD is not

working on constant speed because SSD operates on block

writing and there can be cells between this process which

consist of some other data, so shifting those cells and

continuing the operation might cause variation in speed.

While on read operation, it started from 210MB per second

and then stabilized at 265MB per second. The reason why it

reads so fast is because of the nature of SSD. SSD read and

write data using electronic signal which will always move

fast as compared to the read write head.

G. Page Rank Algorithm

Page rank is a numeric esteem that elaborates how

essential a page is on the web. It is assumed that when one

page connects to an alternate page, it is successfully making

a choice for the other page. The more votes that are thrown

for a page, the more imperative the page must be; likewise’

the significance of the page that is making the choice decides

how essential the vote itself is. Page rank computes a page’s

imperativeness from the votes cast for it. How imperative

each vote is, considered when a page’s Page rank is

computed. In terms of graph, it calculates ranking of each

node present in the graph. The initial values for all vertexes

are set the same and then it repeatedly updates the formula to

get the vertex rank converge. Since, it is required to execute

the entire algorithm on Disk rather than doing it in a

traditional way of going on memory, the storage levels were

customized within the code so that the edge and vertex are

kept on Disk. Furthermore, the recent vertex cut were cached

to give better performance while execution. The cache part

was removed so that on every turn, Disk is consumed and a

clearer picture of disk consumption can be obtained.

Thenceforth, for every resilient distributed dataset, the

storage level was changed to disk so that after each vertex

and edge resilient distributed dataset is calculated. It kept on

disk and then called from disk. Below is the customized code

for page rank algorithm which is kept in Analytics file for

Scala.

val partitionStrategy:

Option[PartitionStrategy] =

options.remove("partStrategy")

.map(PartitionStrategy.fromString(_))

val

edgeStorageLevel =

options.remove("edgeStorageLevel")

.map(StorageLevel.fromString(_))

.getOrElse(StorageLevel.DISK_ONLY)

val vertexStorageLevel =

options.remove("vertexStorageLevel")

.map(StorageLevel.fromString(_))

.getOrElse(StorageLevel.DISK_ONLY)

taskType match {

case "pagerank" =>

val tol = options.remove("tol")

.map(_.toFloat).getOrElse(0.001F)

val outFname =

options.remove("output").getOrElse(

"")

val numIterOpt =

options.remove("numIter").map(_.toI

nt)

options.foreach {

case (opt, _) => throw new

IllegalArgumentException("Inv

alid option: " + opt)

}
println("=======================")

println("| PageRankMod |")

println("=======================") val

sc = new

SparkContext(conf.setAppName("PageR

ank("
+ fname + ")"))

val graph =

GraphLoader.edgeListFile(sc, fname,

numEdgePartitions = numEPart,

edgeStorageLevel =

edgeStorageLevel,

vertexStorageLevel =

vertexStorageLeve

l)

.partitionBy(EdgePartition2D)

println("GRAPHX: Number of vertices " +

graph.vertices.count)

println("GRAPHX: Number of edges " +

graph.edges.count)

val pr = (numIterOpt match {

case Some(numIter) =>

PageRank.run(graph,

numIter)

Journal of Independent Studies and Research – Computing Volume 13 Issue 1 January 2015 33

case None =>

PageRank.runUntilConvergence(grap

h, tol)

}).vertices.cache()

println("GRAPHX: Total rank: " +

pr.map(_._2).reduce(_ + _))

if (!outFname.isEmpty) {

logWarning("Saving pageranks of

pages to " + outFname)

pr.map { case (id, r) => id + "\t" + r

}.saveAsTextFile(outFname)

}

sc.stop()

Fig. (7). Hard Disk Benchmark

Fig. (8). SSD Benchmark

H. GraphX Shuffle Write Benchmark

Unlike Hadoop, Sparke Map Tasks write the output

specifically to disk drive. There is no utilization of an in

memory storage. Each one Map Task composes the same

number of mix records as the quantity of Reduce Task.

It writes one shuffle file for one task. Livejournal Dataset

was used which was partitioned from 1GB to 100MB on

which this operation is performed, the dataset was stored on

distributed file system Hadoop and the results were carried

out on Spark using GraphX api, on page rank algorithm the

dataset was executed.

Journal of Independent Studies and Research – Computing Volume 13 Issue 1 January 2015 34

Fig. (9). SSD vs. HDD Shuffle Write GraphX Livejournal

In Figure 9, it can be observed how solid state drive has

outclassed hard disk drive. On 205MB per second shuffle

write, it just took SSD around 61 minutes while performing

the same operation over HDD it took 4 hours and 9 minutes.

From the above results, it can be noted that the potential of

graph processing framework and it can exploit the nature of

solid state drive.

Twitter Dataset was used on which this operation is

performed. The dataset was stored on distributed file system

Hadoop and the results were carried out on Spark using

GraphX api, on page rank algorithm the dataset was

executed.

Fig. (10). SSD vs. HDD Shuffle Write GraphX Twitter

In Figure 10, it can be observe how hard disk drive has

outclassed solid state drive. On 121MB per second shuffle

write, it just took SSD 61 minutes while performing the same

operation over HDD it took 4 hours and 9 minutes. From the

above results, the potential of graph processing framework

can be commemorated and it can exploit the nature of solid

state drive.

At long last, a SSD will utilize one of two interface

advances: SATA 3 GB/s (likewise promoted as SATA 2 or

SATA II), or the fresher and quicker SATA 6 GB/s

(otherwise known as SATA 3 or SATA III). Drives with the

more advanced interface are perfect with machines equipped

with more established engineering and the other way around.

Yet a SATA 6gb/s drive will convey its best execution just

on the off chance that its joined with a SATA 6gb/s interface.

V. CONCLUSION AND FUTURE WORK

Although SSD has its own advantages over hard disk

drive but still there are area’s which needs to be improved

while working with solid state drives. If benchmarks are

taken into consideration, no doubt SSD is incomparable with

hard disk drive but if write operations of SSD is observe

closely, it still requires optimization. While observing Graph

Processing framework on these storage mediums, the results

were not as expected on all datasets. When page rank

algorithm was executed on live journal dataset, SSD

outclassed HDD but on twitter dataset results came out to be

opposite. At this level it can be concluded that solid state

drives still lacks consistency while performing write

operations, getting specific to graph frameworks, SSD

does not outclassed HDD on all datasets.

This section focuses on related work in SSD

optimization. There still exist problems in SSD while

performing write operation as shown in Fig 9. The write

operation performed by SSD still lacks consistency;

however, read operations are consistent. Furthermore, SSD

does not perform consistently on all datasets. It can be

clearly observed in Fig 10 where hard disk drive has

outclassed SSD.

REFERENCES

[1] Slc vs. mlc: An analysis of flash memory. Super Talent

Technology, Inc. White Paper, San Jose, CA, USA.

[2] Flash solid-state disk reliability. Texas Memory Systems

White Paper, 2008.

[3] C. King and T. Vidas. “Empirical analysis of solid state

disk data retention when used with contemporary

operating systems,” Digital Investigation, vol. 8, pp:

S111–S117, 2011.

[4] D. Crankshaw, A. Dave, R. S. Xin, J. E. Gonzalez, M. J.

Franklin and I. Stoica. “The graphx graph processing

system.” UC Berkeley AMPLab.

[5] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson and C.

Guestrin. “Powergraph: Distributed graph-parallel

computation on natural graphs.” In Proceedings of the

10
th

 USENIX conference on Operating Systems Design

and Implementation (OSDI’12), 2012, vol. 12, pp: 17-

30.

[6] J. Yan, G. Tan and N. Sun. “Gre: A graph runtime

engine for large-scale distributed graph-parallel

applications,” CoRR, abs/1310.5603, 2013.

[7] R. S. Xin, J. E. Gonzalez, M. J. Franklin and I. Stoica,

“Graphx: A resilient distributed graph system on spark,”

In First International Workshop on Graph Data

Management Experiences and Systems, (GRADES ’13),

2013, Art. 2.

