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Abstract – Graph Partitioning is used to distribute 

graph partitions across nodes for processing. It is very 

important in the pre-processing step for distributed 

graph processing. In Math and Computer Science, many 

different distributed graph processing solutions use 

different partitioning approaches. This research deals 

with the identification of issues associated with the 

different graph partitioning approaches. This research 

paper compared the different graph partitioning solution 

(GraphLab, ParMetis, PT-Scotch) by applying them on 

different real world datasets and obtained the I/O and 

partitioning variation between them using different 

technique. This paper describes the procedure of 

configuring the GraphLab on Ubuntu OS and applying 

partitioning and pagerank techniques on it. Pmetis and 

Kmetis are two graph partitioning algorithms used in 

ParMetis. These algorithms were on same graph for 

different numbers of partitions and obtained the I/O and 

partitioning comparison between Pmetis and Kmetis. 

Different vertex cut strategies are also discussed in this 

paper. In this paper, the behavior of PowerGraph and 

PT-Scotch was explored while working on a very large 

datasets. 

Keywords – Graph databases, Graph Partitioning, 

Partitioning Solutions, Edge cuts and vertex cuts, 

Partitioning Techniques  

I. INTRODUCTION 

Many large graphs have emerged in recent years e.g. 

Facebook, Twitter, LinkedIn Data and etc. The notable graph 

is the WWW which now contains more than 50 billion web 

pages and more than one trillion unique URLs [1]. One of 

the biggest challenges is how to partition a graph so that it 

can be deployed on a distributed system [1]. Graph 

partitioning makes it possible to partition a graph G into 

smaller graphs (g1, g2 ….gn), and it is useful in distributed 

architectures. Graph partitioning is very useful for load 

balancing while minimizing communication. It is NP 

complete problem because its solution is based on some 

heuristics. Graph partitioning techniques attempt to ensure 

following characteristics to create good quality partitions [2]: 

 Number of nodes should be the same in every partition. 

 Cross-partition edges of each partition should be reduced 

to a minimum number. 

 Achieve spatial locality for graph processing. 

 In case of shared memory in graph processing, memory 

contention should be minimized. 

 Maximize parallelism. 

 Communication and latency should also be reduced. 

 

In graph, partitioning problems are defined on data in 

the form of G = (V, E), where V are vertices of graph and E 

are the edges in a graph connecting two vertex. Figure 1 

shows a graph partitioning of a directed graph having 6 

vertices V= {A, B, C, D, E, F} and 9 edges which are 

connecting them {(A, B), (B, D), (B, F), (C, E), (C, A), (E, 

A), (E, F), (F, A), (F, D)}. The vertices or set of vertices are 

partitioned into 3 partitions {M1, M2, and M3}. Edge list 

contains the outgoing edges from each vertex as each edge 

has been assigned a unique id by a partitioner and that unique 

id will be used to route a message across network. Vertex A 

espied to be replicated on different nodes so change in vertex 

A must be communicated to other nodes. Synchronization 

can be achieved in this manner. 

 

Fig. (1). Graph and Graph Partitioning [3] 

Different graph partitioning solutions uses different 

partitioning techniques to partition a graph; For example, 

GraphLab partitions a graph using a vertex cut approach, 

while another graph partitioning solution ParMetis uses edge 

cut approach to partition a graph. Figure 2 illustrates the 

vertex cut and edge cut partitioning approaches. 
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Fig. (2). Graph Partitioning Techniques [4] 

Some graph partitioning libraries use coarsening 

strategies to minimize the graph and some use GAS (Gather, 

Apply and Scatter) strategy. To minimize communication 

requirements and balancing the memory load, distributed 

graph systems rely on the availability of a good graph 

partitioning. To meet the challenge of computation on power 

law graph, researchers introduce a new parallel graph 

abstraction that eliminates dependence on the degree of 

vertex program through direct exploitation of vertex-factor 

decomposition of GAS programs [5]. The GAS modal 

consists of three phases. 

Gather: In Gather phase, adjacent vertices information is 

collected. 

Apply: it update the value of the central vertex. 

Scatter: it spreads the new value of the vertex on mirror 

nodes. 

Gather function on each machine runs locally and then 

an accumulator is sent from every local machine or mirror 

node to the master node/copy. The apply function is executed 

on master machine and the updated value sent to every 

mirror machine. Finally, Scatter function runs parallel on 

every local machine. In vertex cut, partitioning vertex can be 

copied at multiple machines so gather & scatter functions 

will run in parallel on each node and the updated value or 

changed value is communicated across the network. Since 

each vertex is stored at multiple machines, the situation 

causes communication and storage overhead which can be 

improved by using different partitioning techniques and this 

paradigm is also a focus area of the research. A balanced p-

way vertex cut approach can be used to achieve this 

objective by limiting the number of machines spanned by 

each vertex. If a vertex A is stored on 10 different machines 

then changes in vertex A must be replicated to all machines. 

Metis sequential graph partitioner uses Edge cut graph 

approach for graph partitioning. It coarsens the input graph 

until they become diminutive. It has three phases. 

A. Coarsening 

Coarsening is used to reduce the complexity of a graph 

and it is the first step in graph partitioning algorithms. The 

purpose of this step is to construct small graphs from the 

graph given as an input. Those small graphs preserve the 

connectivity information. For example, there is an edge (x, y) 

and a newly created node in coarsen graph which have 

weight of sum of the node x and y. When two (super) 

vertices are collapsed together, one of the (super) vertices is 

reused. In other words, one of the vertices is merged into the 

other. After a merger, the vertex that has been merged is not 

deleted. Its edges are deleted and it is declared inactive, but 

its vertex value is utilized to remember which vertex has 

been merged to it [3]. 

B. Initial Partitioning 

In this step, a recursion bisection algorithm which 

repeatedly bisects a graph or sub graph is used for graph 

partitioning. Bisection algorithm uses breadth first traversal 

approach. 

C. Refinement 

In this phase, coarsens graph are projected back into the 

original graph. Coarsening is performed on original graph 

while refinement is performed on small coarsens graph.it 

improves the partitions quality. Partitioning completes after 

this step. 

II. LITERATURE REVIEW 

Rapidly growing social networks and other graph 

datasets require scalable processing infrastructure. Map 

Reduce; despite its popularity for big data computation, is 

limited at supporting iterative graph algorithms. As a result, a 

number of distributed, parallel and Sequential graph 

processing systems have been proposed including GraphLab, 

ParMetis and PT-SCOTCH [3]. Researchers have put an 

enormous amount of efforts into this area as the size of data 

is growing by two folds and it is not an easy task to manage 

the billions nodes of data. That’s how graph partitioning is 

gaining its importance; therefore, to manage enormous 

amount of data, some partitioning techniques were needed. 

There are many approaches to cut a graph on cluster of 

machines p, A common approach is balanced p-way edge cut 

which assigns each vertex evenly to machines and number of 

edges connecting different nodes from different machines are 

minimized. Figure 3 illustrates examples of partitioning. 

 

Fig. (3). Vertex Cut Strategies [5] 

In random vertex cut, edges are randomly assigned to 

different nodes and nearly all vertices are replicated. This 

method has high replication factor. While in other method, 

edges are evenly assign to machines and it has very low 
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replication factor. Structure and data of a graph plays a 

central role in reducing a communication and ensures work 

balance [2]. How different machines or nodes interact when 

a graph is partitioned using vertex cuts is given in Figure 4. 

 

Fig. (4). GAS Composition [6] 

A. Vertex cut strategies 

 

There are three different strategies that can be used in 

vertex cuts graph partitioning. 

1. Balanced p-way vertex-cut 

Power graph allow single vertex to be stored on multiple 

machines. The storage overhead and communication across 

network can be improved. This can be achieved by evenly 

assigning edges to machines and each machine store only 

assigned edges. To achieve this objective, balanced p-way 

cut is used. PowerGraph also addresses the issues associated 

with the edge cut approach. The Power graph enables each 

vertex to be copied at multiple nodes. In vertex cuts, vertex 

program is divided along two machines with a single high 

degree point with gather and scatter functions running 

parallel to each other. It assembles the vertex data which is 

switched across the network grid. As the PowerGraph 

abstractions allow a single vertex program to be copied 

across numerous nodes, it can refine work balances and 

decrease cross network communication and storage load by 

equally giving edge data information to different nodes and 

allowing vertices to range to different nodes. Since each edge 

is not replicated on different nodes, it minimizes the cross 

network communication because the storage and network 

overhead require many machines spread on each vertex and 

any change on vertex must be replicated on all other 

machines. By restricting the number of vertices to copy on 

each vertex, storage and cross network communication 

overhead can be reduced. For every vertex in which replicas 

are multiplied, one specific node / machine is chosen as 

master copy and it enables the master version of the vertex 

data for read / writes operations. Then the left over copies of 

vertex are mirrored and maintains a local vertex data which 

is used for read only purpose. Partitioning a graph in three 

way vertex cut yields only two mirrors but only master data 

will change the data. After the changes are made on master 

copy they are immediately replicated to all mirrors. Edge 

cuts in power graphs are the major issue addressed in Vertex 

cuts. To break a graph instantly, high degree vertices must be 

cut into small fractions. The balance constraints assure that 

edges are evenly spread across the nodes and naturally 

improving work balance even in presence of vertices with a 

very high degree. Randomly assigning edges to machines is 

the easiest way to construct a vertex cut. Randomly placing 

edges which are fully parallel to data, almost perfect 

balances can be achieved on a larger graph and this can be 

applied to stream settings. 

2. Greedy Vertex cuts 

To improve vertex cuts random construction, the process 

of placing the edge should be redirected which minimizes the 

expected replication factor places next edges on the nodes 

[7]. When considering the placement task i + 1 edge after 

placing the leading edge i, a randomization is constructed. 

The targets are defined by using the conditional expectations 

[7]. The greedy algorithm does not work without the 

coordination of different nodes and there are two distributed 

implementations of it. 

2A. Coordinated 

In coordinated, greedy heuristic runs on every machine 

and update the distributed table continuously. To improve the 

performance, cashing is used which decrease the 

communication with the estimate of Ai (v).   

2B. Oblivious 

In oblivious, greedy heuristic runs independently on 

each node and each node/ machine maintains its own 

estimate of Ai and with no additional communication. 

3. Balanced p-way Hybrid cut 

Hybrid vertex-cut algorithm uses differentiated 

partitioning for low degree and high-degree vertices. Based 

on this approach, a new heuristic algorithm is derived called 

Ginger and is provided to further optimize partitioning for 

PowerLyra [7]. In hybrid cut, vertices evenly set edges to 

nodes and only copy vertices to construct a graph. The 

replication factor; the average copies for a vertex, is 

dependent upon the memory and network overhead. High 

degree in a regular graph brings upon a rupturing increase in 

vertex cuts already present. The overall goal of the existing 

vertex cuts is to decrease the number of vertices. Since the 

high degree vertices eventually need to be copied to the 

majority of the processors, the key is decreasing the low 

degree vertices. Unfortunately, the existing heuristic 

algorithm for vertex cuts is bias towards high degree vertex. 

Adopting differentiated partitioning to low and high degree 

vertices; an evenly balanced p- way hybrid cut is provided 

that prioritizes on decreasing the low degree vertices. 

Majority edges independently belong to their assigned 

vertex and destination of an edge to stay away from multiple 

copies of the edges. Low degree vertices are adopted by 

hybrid cuts to equally give low cut with in edges to nodes by 

mixing up their target vertices. In a high degree vertices case, 

high cuts are adopted by hybrid cuts to spread all edges by 

mixing their source vertices. Later, hybrid cuts task is to 

make copies and build local graphs as regular vertex cuts. In 

hybrid cuts, all vertices along with their edges are given a 

low degree vertex. The partition created by hybrid cut only 

delivers four mirrors and collects good even loaded balances. 
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On skewed graphs, greater issues of hybrid cuts are given 

with edge and vertex cuts. Firstly, the replication factor given 

for hybrid cut is extremely low. In low degree vertices, all 

edges are gathered with their assigned vertex; therefore, no 

need to form replicas for them. In a high degree vertices 

case, the higher bound of increased copies is caused by 

adding a high degree vertex evenly to number of partitions 

like machines. Unlike the degree of the vertex which shuns 

an expanding replication factor in edge and vertex cuts. 

Secondly, hybrid cut gives unidirectional permission locally 

which when used by hybrid computation model to decrease 

communication cost in run time. Thirdly, hybrid cut is very 

accurate in graph ingress because it is hash based partitioning 

for both high and low degree vertices. Finally, partitions 

created by hybrid cuts are naturally balanced on vertices and 

edges. Random placing of low degree vertices leads to 

balance of vertices which are almost like balancing the edges 

for low edge vertices. 

III. Graph Partitioning 

The problem of a finding an optimal partition is NP-

complete as a result many approximate solutions have been 

proposed [1]. Following are the list of efficient graph 

partitioning techniques. As the size and amount of collected 

data and computing power grows, it become very difficult 

for modern datasets to fit on one single node. Efficient, 

parallel and distributed algorithms are required for large 

scale data. That is where graph partitioning solutions came in 

and provides a solution to these problems.  

A. GraphLab 

GraphLab is an open source distributed computation 

framework developed in C++ and it is used to perform data 

mining tasks. GraphLab perform partitioning by cutting 

vertices instead of cutting edges. In vertex cut, a high degree 

vertex can be split across multiple machines. GraphLab 

differentiate between vertex data shared with adjacent 

vertices and edge data shared with all neighbors. GraphLab 

works with the undirected graph and does not differentiate 

between graph edges. GraphLab uses GAS modal for the 

partitioning of graphs and run an update function for a vertex 

on multiple machines in parallel instead of running an update 

function on single machine. It uses de-randomization 

strategy for partitioning instead of a randomly constructing a 

vertex cuts. In de-randomization strategy, vertex is equally 

assigned to machines. Purpose of this is to avoid the cross 

machines communication.  

B. Graphlab versions 

Three are three different graph lab versions. 

 

1. Shared-memory, multicore parallel GraphLab 

Let suppose a Graph G = (Vertices, Edges, and Data) 

where V represents Vertices (set of vertices), E represents 

Edges (set of edges) and D is the user-defined data and data 

can be associated with each vertex Dv: v in V or can be 

associated to each Edge (Du). Graph structure is static while 

data is mutable. It was a stateless procedure which updates 

data only within the scope of a vertex and schedules or 

execute the future updates on other functions. The drawback 

in this procedure is simultaneous execution of two update 

functions which can result in collision / race condition.  

2. Distributed GraphLab 

In distributed GraphLab, graph is partitioned into many 

sets and each set executes on separate machine of clusters. 

Delta cache consistency has been introduces which keeps the 

vertex consistent. If a lock on plot is required on an edge or 

vertex on the boundary which has to do in both partitions 

involved; therefore, locking becomes distributed locking. 

Grpahlab solve fault tolerance issue by check pointing. 

3. Power Graph 

PowerGraph combines the feature from GraphLab and 

Pregel [8]. The problem is many graphs have a power law 

connectivity distribution. There are popular vertices with 

many edges as well as unpopular vertices with fewer edges. 

Typically, a Zipf distribution of in / out degree. This causes 

huge problems for GraphLab as partitioning becomes highly 

imbalanced. Since some partitions have high degree of nodes 

while some has very few. The situation leads to imbalance 

computation. Power graph innovate few things. In first 

innovation, PowerGraph perform partitioning by vertex cuts 

instead of edge cuts which pick one partition for each edge 

and allow high degree vertices to be copied at multiple 

machines. In second invention, power graph runs update 

function in parallel instead of to run it on single vertex, this 

lead high degree vertex to be updated parallelized. In third 

invention, PowerGraph use balanced way partitioning instead 

of random partitioning which equivalence the load on each 

partitions. PowerGraph also introduced the concept of delta 

caching, and purpose of this concept is to only trigger those 

vertices on other machines where changes need to be 

communicated. It also maintains the result of gather phase 

which allow skipping the gather phase in subsequent 

iterations. List of active vertices is maintained by 

PowerGraph engine. Power engine set the order of active 

vertices and executed them according to that order. 

PowerGraph introduced a new concept known as Balanced 

p-way vertex-cut and Greedy vertex cuts approaches. 

C. ParMetis 

The most widely used graph partitioner is the sequential 

partitioner Metis from Karypis [4]. There are several parallel 

graph partitioners: ParMetis, PT-Scotch and etc. All of these 

implementations are explicitly parallel programs for 

distributed-memory architectures. ParMetis is a 

parallelization of Kmetis using MPI. In ParMetis, each 

process owns a random portion of the input graph [4]. 

ParMetis is a library that is used for partitioning of irregular 

large graphs using multilevel graph partitioning algorithms. 

Traditional graph partitioning algorithms perform a 

partitioning directly on original graph and are very slow and 

do not produced a good quality partitions. Multilevel 

algorithms work entirely in different way. They reduced the 
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size of the original graph by collapsing the vertices and 

edges. Multilevel algorithm coarsen the input graph, perform 

initial partitioning on small coarsen graph and then project 

these smaller graph into original graph in lase refinement 

phase. In this way, Metis produced high quality partitions for 

large graphs. Metis partition the graphs in the presence of a 

multiple balancing constraints. Constrains can be weight 

associated with the domain or associated with the storage. 

Metis provides a library which is written in C ++ in which 

different functions are exposed. Those functions can be used 

to perform a partitioning on input graph. Metis also provide 

the graph check class which take graph as an input and return 

whether the graph format is inappropriate or not. Format of 

the command is given below; write below on command line 

interface: 

Graphch graphFile; where graph file is the input graph. 

D. PT-SCOTCH 

PT-Scotch is a library used for sequential and parallel 

graph partitioning. It also use the multilevel heuristics for 

graph partitioning. In multilevel graph, heuristics graph is 

first coarsening (divided into smaller parts) then performed 

the partitioning on that smaller parts. PT-Scotch applies the 

bisection algorithm iteratively. The key point that 

differentiates the PT-Scotch from ParMetis is ParMetis 

performs one level of coarsening despite the number of 

partitions desired whereas PT-Scotch performs [Log2n] 

cycles of coarsening and refinement. It only computes 

bisection on each step resulting in recursively repeating the 

same step. PT-Scotch use “divide and conquer” approach 

which recursively breaks a problem into more sub problems 

which can be of the same (related) or non-related type. It 

breaks the problems into small pieces until they become 

simple enough to solve. Then combine the result of the 

problems to yields a single solutions or result. 

IV. EXPERIMENTAL SETUP 

This Research work is based on experimental setup in 

which following step has been taken to achieve the research 

objective: 

A. Dataset 

For this research, live journal dataset has been used 

which is provided by SNAP (Stanford Network Analysis 

Project). It is a graph mining library and general purpose 

network analysis. It provides graph with millions of vertices 

and edges. A live journal graph was downloaded which 

consists of 4847571 nodes and 68993773 edges. 

B. Tools / OS 

Tools and Operating system that has been used for 

experimental work are; 

Ubuntu is an open source OS and in this research work, 

it is required to run GraphLab. It is required for compiling 

GraphLab and installs the build-essential package. 

Step 1: 

Installation and configuration of GraphLab 

Step 2: 

For GraphLab, in first step, the large dataset was 

selected for experiment. Live general dataset was 

downloaded from Stanford Large Network Dataset 

Collection. Dataset statistics are as below: 

Nodes:  4847571 

Edges:  68993773 

 Step 3: 

After confirming the dataset, the chunks of a large graph 

file were created and the size of each chunk is approximately 

150 MB using following command. 

Split -l 10000000 soc-LiveJournal1.txt 

Where soc-LiveJournal1.txt is the graph file stored in 

directory dataset. 

Step 4: 

Pagerank and Partitioning algorithms were executed on 

dataset using the following commands on Ubuntu command 

line editor. 

./pagerank --graph=./dataset/soc-LiveJournal1_t10m.txt -

-format="snap" 

 ./partitioning --graph=./dataset/soc-

LiveJournal1_t10m.txt --format="snap" 

V. RESULTS 

Following are the results obtained from executing 

Kmetis and Pmetis for different number of machines / 

partitions. 

 

Fig. (5). I/O Comparison of Kmetis and Pmetis 
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Figure 5 represents the graphical comparison of I/O 

Kmetis and I/O Pmetis. There is not much difference at this 

level. Partitioning comparison between Kmetis and Pmetis is 

given below. 

 

Fig. (6). Partitioning Comparison of Kmetis and Pmetis 

Figure 6 represents the partitioning comparison of 

Kmetis and I/O Pmetis. It is evident from above Figure that 

Pmetis performs better when numbers of partitions are small 

while Kmetis performs better when numbers of partitions are 

greater than 16. 

Table 1. Kmetis and Pmetis for 2 way partitioning 

Kmetis for 2 partitions 

Graph details 

# of 

vertices 
# of Edges partitions 

15606 45878 2 

2way 

Partitioning 

# on Edge 

cuts 
Balance   

141 1.03   

Timing 

information 

I/O Time         
Partitioning 

Time  

Total 

Time 

0.031 0.016 0.047 

    
Pmetis for 2 partitions 

Graph details 

# of 

vertices 
# of Edges Partitions 

15606 45878 2 

2 way 

Partitioning 

# on Edge 

cuts 
Balance   

142 1   

Timing 
I/O Time 

Partitioning Total 

information Time Time 

0.029 0.004 0.035 

 

Table 1 shows I/O and partitioning result for 2 

partitions. A graph having vertices 15606 and Edges 45878 

when partitioned using Kmetis and Pmetis produced above 

results and above results are showing that when numbers of 

partitions are two, Pmetis perform better than Kmetis. It can 

be seen that both I/O and Partitioned results for Pmetis 

taking less time than Kmetis. 

Table 2. Kmetis and Pmetis for 64 way partitioning 

Kmetis for 64 partitions 

Graph 

information 

# of 

vertices 
# of Edges Partitions 

15606 45878 64 

64 way 

Partitioning 

# on 

Edge 

cuts 

Balance   

2840 1.03   

Timing 

information 

I/O Partitioning Total 

0.032 0.014 0.048 

 
 

 
 

Pmetis for 64 partitions 

Graph 

information 

# of 

vertices 
# of Edges Partitions 

15606 45878 64 

64 way 

Partitioning 

# on 

Edge 

cuts 

Balance   

2919 1   

Timing 

information 

I/O Partitioning Total 

0.033 0.033 0.069 

 

Table 2 shows I/O and partitioning result for 64 

partitions. A graph having vertices 15606 and Edges 45878, 

when partitioned using Kmetis and Pmetis produced above 

results and above results are showing that when numbers of 

partitions are 64, Kmetis outperform Pmetis. It can be seen 

that both I/O and Partitioned results for Kmetis taking lesser 

time than Pmetis. 
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Table 3. Kmetis and Pmetis for 512 partitioning 

Kmetis for 512 partitions 

Graph details 

# of 

vertices 
# of Edges Partitions 

15606 45878 512 

512 way 

Partitioning 

# on Edge 

cuts 
Balance   

9860 1.05   

Timing 

information 

I/O Time 
Partitioning 

Time 

Total 

Time 

0.038 0.066 0.109 

    
Pmetis for 512 partitions 

Graph details 

# of 

vertices 
# of Edges Partitions 

15606 45878 512 

512 way 

Partitioning 

# on Edge 

cuts 
Balance   

6942 1.02   

Timing 

information 

I/O Time 
Partitioning 

Time 

Total 

Time 

0.04 0.09 0.135 

 

Table 3 shows I/O and partitioning result for 512 

partitions. A graph having vertices 15606 and edges 45878 

when partitioned using Kmetis and Pmetis produced above 

results and above results are showing that when numbers of 

partitions are 512, Kmetis outperform Pmetis. It is evident 

that both I/O and Partitioned results for Kmetis taking lesser 

time than Pmetis. After above experiments, it has been 

proved that when number of partitions are high, only 

practical approach is Kmetis, while for small number of 

partitions, Pmetis is better approach. 

VI. CONCLUSION 

It has been identified that PowerGraph produce better 

partitioning then ParMetis and PT-Scotch. PowerGraph uses 

the Vertex cut approach for graph partitioning while 

ParMetis and PT-Scotch uses the edge cuts approach. It also 

has been identified that ParMetis uses two different 

algorithms Kmetis and Pmetis. Both the algorithms were 

executed on same dataset and it has been observed that 

Kmetis outperformed Pmetis. But for small number of 

partitions (e.g. less than or equal to 10), Pmetis performance 

is better than Kmetis. For large number of partitions Kmetis 

is the practical approach and should be followed. 

ParMetis and PT-Scotch use the same edge cut 

(Coarsening, initial partitioning and Refinement) strategy for 

graph partitioning. ParMetis and PT-Scotch both uses 

Recursive bisection algorithms. The key difference which 

has been identified between ParMetis and PT-Scotch is 

ParMetis applies Recursive bisection algorithm on coarsens 

graph only once while PT-Scotch apply this algorithms 

recursively on resultant coarsen graph due to which it 

perform slower for large graphs and ParMetis performs 

better than PT-Scotch for large number of graph. 
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