
Journal of Independent Studies and Research – Computing Volume 13 Issue 1 January 2015 57

Standard Framework for Comparison of Graph

Partitioning Techniques

Mudasser Iqbal
1
, Dr. Saif-ur-Rahman

2

1,2
Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST) Karachi, Pakistan

1mudassar.iqb@gmail.com

2saif.rahman@szabist.edu.pk

Abstract – Graph Partitioning is used to distribute

graph partitions across nodes for processing. It is very

important in the pre-processing step for distributed

graph processing. In Math and Computer Science, many

different distributed graph processing solutions use

different partitioning approaches. This research deals

with the identification of issues associated with the

different graph partitioning approaches. This research

paper compared the different graph partitioning solution

(GraphLab, ParMetis, PT-Scotch) by applying them on

different real world datasets and obtained the I/O and

partitioning variation between them using different

technique. This paper describes the procedure of

configuring the GraphLab on Ubuntu OS and applying

partitioning and pagerank techniques on it. Pmetis and

Kmetis are two graph partitioning algorithms used in

ParMetis. These algorithms were on same graph for

different numbers of partitions and obtained the I/O and

partitioning comparison between Pmetis and Kmetis.

Different vertex cut strategies are also discussed in this

paper. In this paper, the behavior of PowerGraph and

PT-Scotch was explored while working on a very large

datasets.

Keywords – Graph databases, Graph Partitioning,

Partitioning Solutions, Edge cuts and vertex cuts,

Partitioning Techniques

I. INTRODUCTION

Many large graphs have emerged in recent years e.g.

Facebook, Twitter, LinkedIn Data and etc. The notable graph

is the WWW which now contains more than 50 billion web

pages and more than one trillion unique URLs [1]. One of

the biggest challenges is how to partition a graph so that it

can be deployed on a distributed system [1]. Graph

partitioning makes it possible to partition a graph G into

smaller graphs (g1, g2 ….gn), and it is useful in distributed

architectures. Graph partitioning is very useful for load

balancing while minimizing communication. It is NP

complete problem because its solution is based on some

heuristics. Graph partitioning techniques attempt to ensure

following characteristics to create good quality partitions [2]:

 Number of nodes should be the same in every partition.

 Cross-partition edges of each partition should be reduced

to a minimum number.

 Achieve spatial locality for graph processing.

 In case of shared memory in graph processing, memory

contention should be minimized.

 Maximize parallelism.

 Communication and latency should also be reduced.

In graph, partitioning problems are defined on data in

the form of G = (V, E), where V are vertices of graph and E

are the edges in a graph connecting two vertex. Figure 1

shows a graph partitioning of a directed graph having 6

vertices V= {A, B, C, D, E, F} and 9 edges which are

connecting them {(A, B), (B, D), (B, F), (C, E), (C, A), (E,

A), (E, F), (F, A), (F, D)}. The vertices or set of vertices are

partitioned into 3 partitions {M1, M2, and M3}. Edge list

contains the outgoing edges from each vertex as each edge

has been assigned a unique id by a partitioner and that unique

id will be used to route a message across network. Vertex A

espied to be replicated on different nodes so change in vertex

A must be communicated to other nodes. Synchronization

can be achieved in this manner.

Fig. (1). Graph and Graph Partitioning [3]

Different graph partitioning solutions uses different

partitioning techniques to partition a graph; For example,

GraphLab partitions a graph using a vertex cut approach,

while another graph partitioning solution ParMetis uses edge

cut approach to partition a graph. Figure 2 illustrates the

vertex cut and edge cut partitioning approaches.

mailto:saif.rahman@szabist.edu.pk

Journal of Independent Studies and Research – Computing Volume 13 Issue 1 January 2015 58

Fig. (2). Graph Partitioning Techniques [4]

Some graph partitioning libraries use coarsening

strategies to minimize the graph and some use GAS (Gather,

Apply and Scatter) strategy. To minimize communication

requirements and balancing the memory load, distributed

graph systems rely on the availability of a good graph

partitioning. To meet the challenge of computation on power

law graph, researchers introduce a new parallel graph

abstraction that eliminates dependence on the degree of

vertex program through direct exploitation of vertex-factor

decomposition of GAS programs [5]. The GAS modal

consists of three phases.

Gather: In Gather phase, adjacent vertices information is

collected.

Apply: it update the value of the central vertex.

Scatter: it spreads the new value of the vertex on mirror

nodes.

Gather function on each machine runs locally and then

an accumulator is sent from every local machine or mirror

node to the master node/copy. The apply function is executed

on master machine and the updated value sent to every

mirror machine. Finally, Scatter function runs parallel on

every local machine. In vertex cut, partitioning vertex can be

copied at multiple machines so gather & scatter functions

will run in parallel on each node and the updated value or

changed value is communicated across the network. Since

each vertex is stored at multiple machines, the situation

causes communication and storage overhead which can be

improved by using different partitioning techniques and this

paradigm is also a focus area of the research. A balanced p-

way vertex cut approach can be used to achieve this

objective by limiting the number of machines spanned by

each vertex. If a vertex A is stored on 10 different machines

then changes in vertex A must be replicated to all machines.

Metis sequential graph partitioner uses Edge cut graph

approach for graph partitioning. It coarsens the input graph

until they become diminutive. It has three phases.

A. Coarsening

Coarsening is used to reduce the complexity of a graph

and it is the first step in graph partitioning algorithms. The

purpose of this step is to construct small graphs from the

graph given as an input. Those small graphs preserve the

connectivity information. For example, there is an edge (x, y)

and a newly created node in coarsen graph which have

weight of sum of the node x and y. When two (super)

vertices are collapsed together, one of the (super) vertices is

reused. In other words, one of the vertices is merged into the

other. After a merger, the vertex that has been merged is not

deleted. Its edges are deleted and it is declared inactive, but

its vertex value is utilized to remember which vertex has

been merged to it [3].

B. Initial Partitioning

In this step, a recursion bisection algorithm which

repeatedly bisects a graph or sub graph is used for graph

partitioning. Bisection algorithm uses breadth first traversal

approach.

C. Refinement

In this phase, coarsens graph are projected back into the

original graph. Coarsening is performed on original graph

while refinement is performed on small coarsens graph.it

improves the partitions quality. Partitioning completes after

this step.

II. LITERATURE REVIEW

Rapidly growing social networks and other graph

datasets require scalable processing infrastructure. Map

Reduce; despite its popularity for big data computation, is

limited at supporting iterative graph algorithms. As a result, a

number of distributed, parallel and Sequential graph

processing systems have been proposed including GraphLab,

ParMetis and PT-SCOTCH [3]. Researchers have put an

enormous amount of efforts into this area as the size of data

is growing by two folds and it is not an easy task to manage

the billions nodes of data. That’s how graph partitioning is

gaining its importance; therefore, to manage enormous

amount of data, some partitioning techniques were needed.

There are many approaches to cut a graph on cluster of

machines p, A common approach is balanced p-way edge cut

which assigns each vertex evenly to machines and number of

edges connecting different nodes from different machines are

minimized. Figure 3 illustrates examples of partitioning.

Fig. (3). Vertex Cut Strategies [5]

In random vertex cut, edges are randomly assigned to

different nodes and nearly all vertices are replicated. This

method has high replication factor. While in other method,

edges are evenly assign to machines and it has very low

Journal of Independent Studies and Research – Computing Volume 13 Issue 1 January 2015 59

replication factor. Structure and data of a graph plays a

central role in reducing a communication and ensures work

balance [2]. How different machines or nodes interact when

a graph is partitioned using vertex cuts is given in Figure 4.

Fig. (4). GAS Composition [6]

A. Vertex cut strategies

There are three different strategies that can be used in

vertex cuts graph partitioning.

1. Balanced p-way vertex-cut

Power graph allow single vertex to be stored on multiple

machines. The storage overhead and communication across

network can be improved. This can be achieved by evenly

assigning edges to machines and each machine store only

assigned edges. To achieve this objective, balanced p-way

cut is used. PowerGraph also addresses the issues associated

with the edge cut approach. The Power graph enables each

vertex to be copied at multiple nodes. In vertex cuts, vertex

program is divided along two machines with a single high

degree point with gather and scatter functions running

parallel to each other. It assembles the vertex data which is

switched across the network grid. As the PowerGraph

abstractions allow a single vertex program to be copied

across numerous nodes, it can refine work balances and

decrease cross network communication and storage load by

equally giving edge data information to different nodes and

allowing vertices to range to different nodes. Since each edge

is not replicated on different nodes, it minimizes the cross

network communication because the storage and network

overhead require many machines spread on each vertex and

any change on vertex must be replicated on all other

machines. By restricting the number of vertices to copy on

each vertex, storage and cross network communication

overhead can be reduced. For every vertex in which replicas

are multiplied, one specific node / machine is chosen as

master copy and it enables the master version of the vertex

data for read / writes operations. Then the left over copies of

vertex are mirrored and maintains a local vertex data which

is used for read only purpose. Partitioning a graph in three

way vertex cut yields only two mirrors but only master data

will change the data. After the changes are made on master

copy they are immediately replicated to all mirrors. Edge

cuts in power graphs are the major issue addressed in Vertex

cuts. To break a graph instantly, high degree vertices must be

cut into small fractions. The balance constraints assure that

edges are evenly spread across the nodes and naturally

improving work balance even in presence of vertices with a

very high degree. Randomly assigning edges to machines is

the easiest way to construct a vertex cut. Randomly placing

edges which are fully parallel to data, almost perfect

balances can be achieved on a larger graph and this can be

applied to stream settings.

2. Greedy Vertex cuts

To improve vertex cuts random construction, the process

of placing the edge should be redirected which minimizes the

expected replication factor places next edges on the nodes

[7]. When considering the placement task i + 1 edge after

placing the leading edge i, a randomization is constructed.

The targets are defined by using the conditional expectations

[7]. The greedy algorithm does not work without the

coordination of different nodes and there are two distributed

implementations of it.

2A. Coordinated

In coordinated, greedy heuristic runs on every machine

and update the distributed table continuously. To improve the

performance, cashing is used which decrease the

communication with the estimate of Ai (v).

2B. Oblivious

In oblivious, greedy heuristic runs independently on

each node and each node/ machine maintains its own

estimate of Ai and with no additional communication.

3. Balanced p-way Hybrid cut

Hybrid vertex-cut algorithm uses differentiated

partitioning for low degree and high-degree vertices. Based

on this approach, a new heuristic algorithm is derived called

Ginger and is provided to further optimize partitioning for

PowerLyra [7]. In hybrid cut, vertices evenly set edges to

nodes and only copy vertices to construct a graph. The

replication factor; the average copies for a vertex, is

dependent upon the memory and network overhead. High

degree in a regular graph brings upon a rupturing increase in

vertex cuts already present. The overall goal of the existing

vertex cuts is to decrease the number of vertices. Since the

high degree vertices eventually need to be copied to the

majority of the processors, the key is decreasing the low

degree vertices. Unfortunately, the existing heuristic

algorithm for vertex cuts is bias towards high degree vertex.

Adopting differentiated partitioning to low and high degree

vertices; an evenly balanced p- way hybrid cut is provided

that prioritizes on decreasing the low degree vertices.

Majority edges independently belong to their assigned

vertex and destination of an edge to stay away from multiple

copies of the edges. Low degree vertices are adopted by

hybrid cuts to equally give low cut with in edges to nodes by

mixing up their target vertices. In a high degree vertices case,

high cuts are adopted by hybrid cuts to spread all edges by

mixing their source vertices. Later, hybrid cuts task is to

make copies and build local graphs as regular vertex cuts. In

hybrid cuts, all vertices along with their edges are given a

low degree vertex. The partition created by hybrid cut only

delivers four mirrors and collects good even loaded balances.

Journal of Independent Studies and Research – Computing Volume 13 Issue 1 January 2015 60

On skewed graphs, greater issues of hybrid cuts are given

with edge and vertex cuts. Firstly, the replication factor given

for hybrid cut is extremely low. In low degree vertices, all

edges are gathered with their assigned vertex; therefore, no

need to form replicas for them. In a high degree vertices

case, the higher bound of increased copies is caused by

adding a high degree vertex evenly to number of partitions

like machines. Unlike the degree of the vertex which shuns

an expanding replication factor in edge and vertex cuts.

Secondly, hybrid cut gives unidirectional permission locally

which when used by hybrid computation model to decrease

communication cost in run time. Thirdly, hybrid cut is very

accurate in graph ingress because it is hash based partitioning

for both high and low degree vertices. Finally, partitions

created by hybrid cuts are naturally balanced on vertices and

edges. Random placing of low degree vertices leads to

balance of vertices which are almost like balancing the edges

for low edge vertices.

III. Graph Partitioning

The problem of a finding an optimal partition is NP-

complete as a result many approximate solutions have been

proposed [1]. Following are the list of efficient graph

partitioning techniques. As the size and amount of collected

data and computing power grows, it become very difficult

for modern datasets to fit on one single node. Efficient,

parallel and distributed algorithms are required for large

scale data. That is where graph partitioning solutions came in

and provides a solution to these problems.

A. GraphLab

GraphLab is an open source distributed computation

framework developed in C++ and it is used to perform data

mining tasks. GraphLab perform partitioning by cutting

vertices instead of cutting edges. In vertex cut, a high degree

vertex can be split across multiple machines. GraphLab

differentiate between vertex data shared with adjacent

vertices and edge data shared with all neighbors. GraphLab

works with the undirected graph and does not differentiate

between graph edges. GraphLab uses GAS modal for the

partitioning of graphs and run an update function for a vertex

on multiple machines in parallel instead of running an update

function on single machine. It uses de-randomization

strategy for partitioning instead of a randomly constructing a

vertex cuts. In de-randomization strategy, vertex is equally

assigned to machines. Purpose of this is to avoid the cross

machines communication.

B. Graphlab versions

Three are three different graph lab versions.

1. Shared-memory, multicore parallel GraphLab

Let suppose a Graph G = (Vertices, Edges, and Data)

where V represents Vertices (set of vertices), E represents

Edges (set of edges) and D is the user-defined data and data

can be associated with each vertex Dv: v in V or can be

associated to each Edge (Du). Graph structure is static while

data is mutable. It was a stateless procedure which updates

data only within the scope of a vertex and schedules or

execute the future updates on other functions. The drawback

in this procedure is simultaneous execution of two update

functions which can result in collision / race condition.

2. Distributed GraphLab

In distributed GraphLab, graph is partitioned into many

sets and each set executes on separate machine of clusters.

Delta cache consistency has been introduces which keeps the

vertex consistent. If a lock on plot is required on an edge or

vertex on the boundary which has to do in both partitions

involved; therefore, locking becomes distributed locking.

Grpahlab solve fault tolerance issue by check pointing.

3. Power Graph

PowerGraph combines the feature from GraphLab and

Pregel [8]. The problem is many graphs have a power law

connectivity distribution. There are popular vertices with

many edges as well as unpopular vertices with fewer edges.

Typically, a Zipf distribution of in / out degree. This causes

huge problems for GraphLab as partitioning becomes highly

imbalanced. Since some partitions have high degree of nodes

while some has very few. The situation leads to imbalance

computation. Power graph innovate few things. In first

innovation, PowerGraph perform partitioning by vertex cuts

instead of edge cuts which pick one partition for each edge

and allow high degree vertices to be copied at multiple

machines. In second invention, power graph runs update

function in parallel instead of to run it on single vertex, this

lead high degree vertex to be updated parallelized. In third

invention, PowerGraph use balanced way partitioning instead

of random partitioning which equivalence the load on each

partitions. PowerGraph also introduced the concept of delta

caching, and purpose of this concept is to only trigger those

vertices on other machines where changes need to be

communicated. It also maintains the result of gather phase

which allow skipping the gather phase in subsequent

iterations. List of active vertices is maintained by

PowerGraph engine. Power engine set the order of active

vertices and executed them according to that order.

PowerGraph introduced a new concept known as Balanced

p-way vertex-cut and Greedy vertex cuts approaches.

C. ParMetis

The most widely used graph partitioner is the sequential

partitioner Metis from Karypis [4]. There are several parallel

graph partitioners: ParMetis, PT-Scotch and etc. All of these

implementations are explicitly parallel programs for

distributed-memory architectures. ParMetis is a

parallelization of Kmetis using MPI. In ParMetis, each

process owns a random portion of the input graph [4].

ParMetis is a library that is used for partitioning of irregular

large graphs using multilevel graph partitioning algorithms.

Traditional graph partitioning algorithms perform a

partitioning directly on original graph and are very slow and

do not produced a good quality partitions. Multilevel

algorithms work entirely in different way. They reduced the

Journal of Independent Studies and Research – Computing Volume 13 Issue 1 January 2015 61

size of the original graph by collapsing the vertices and

edges. Multilevel algorithm coarsen the input graph, perform

initial partitioning on small coarsen graph and then project

these smaller graph into original graph in lase refinement

phase. In this way, Metis produced high quality partitions for

large graphs. Metis partition the graphs in the presence of a

multiple balancing constraints. Constrains can be weight

associated with the domain or associated with the storage.

Metis provides a library which is written in C ++ in which

different functions are exposed. Those functions can be used

to perform a partitioning on input graph. Metis also provide

the graph check class which take graph as an input and return

whether the graph format is inappropriate or not. Format of

the command is given below; write below on command line

interface:

Graphch graphFile; where graph file is the input graph.

D. PT-SCOTCH

PT-Scotch is a library used for sequential and parallel

graph partitioning. It also use the multilevel heuristics for

graph partitioning. In multilevel graph, heuristics graph is

first coarsening (divided into smaller parts) then performed

the partitioning on that smaller parts. PT-Scotch applies the

bisection algorithm iteratively. The key point that

differentiates the PT-Scotch from ParMetis is ParMetis

performs one level of coarsening despite the number of

partitions desired whereas PT-Scotch performs [Log2n]

cycles of coarsening and refinement. It only computes

bisection on each step resulting in recursively repeating the

same step. PT-Scotch use “divide and conquer” approach

which recursively breaks a problem into more sub problems

which can be of the same (related) or non-related type. It

breaks the problems into small pieces until they become

simple enough to solve. Then combine the result of the

problems to yields a single solutions or result.

IV. EXPERIMENTAL SETUP

This Research work is based on experimental setup in

which following step has been taken to achieve the research

objective:

A. Dataset

For this research, live journal dataset has been used

which is provided by SNAP (Stanford Network Analysis

Project). It is a graph mining library and general purpose

network analysis. It provides graph with millions of vertices

and edges. A live journal graph was downloaded which

consists of 4847571 nodes and 68993773 edges.

B. Tools / OS

Tools and Operating system that has been used for

experimental work are;

Ubuntu is an open source OS and in this research work,

it is required to run GraphLab. It is required for compiling

GraphLab and installs the build-essential package.

Step 1:

Installation and configuration of GraphLab

Step 2:

For GraphLab, in first step, the large dataset was

selected for experiment. Live general dataset was

downloaded from Stanford Large Network Dataset

Collection. Dataset statistics are as below:

Nodes: 4847571

Edges: 68993773

 Step 3:

After confirming the dataset, the chunks of a large graph

file were created and the size of each chunk is approximately

150 MB using following command.

Split -l 10000000 soc-LiveJournal1.txt

Where soc-LiveJournal1.txt is the graph file stored in

directory dataset.

Step 4:

Pagerank and Partitioning algorithms were executed on

dataset using the following commands on Ubuntu command

line editor.

./pagerank --graph=./dataset/soc-LiveJournal1_t10m.txt -

-format="snap"

 ./partitioning --graph=./dataset/soc-

LiveJournal1_t10m.txt --format="snap"

V. RESULTS

Following are the results obtained from executing

Kmetis and Pmetis for different number of machines /

partitions.

Fig. (5). I/O Comparison of Kmetis and Pmetis

0

0.02

0.04

0.06

2 64 256 512

Ti
m

e
 (

se
c)

No of Partitions

I/O Kmetis I/O Pmetis

Journal of Independent Studies and Research – Computing Volume 13 Issue 1 January 2015 62

Figure 5 represents the graphical comparison of I/O

Kmetis and I/O Pmetis. There is not much difference at this

level. Partitioning comparison between Kmetis and Pmetis is

given below.

Fig. (6). Partitioning Comparison of Kmetis and Pmetis

Figure 6 represents the partitioning comparison of

Kmetis and I/O Pmetis. It is evident from above Figure that

Pmetis performs better when numbers of partitions are small

while Kmetis performs better when numbers of partitions are

greater than 16.

Table 1. Kmetis and Pmetis for 2 way partitioning

Kmetis for 2 partitions

Graph details

of

vertices
of Edges partitions

15606 45878 2

2way

Partitioning

on Edge

cuts
Balance

141 1.03

Timing

information

I/O Time
Partitioning

Time

Total

Time

0.031 0.016 0.047

Pmetis for 2 partitions

Graph details

of

vertices
of Edges Partitions

15606 45878 2

2 way

Partitioning

on Edge

cuts
Balance

142 1

Timing
I/O Time

Partitioning Total

information Time Time

0.029 0.004 0.035

Table 1 shows I/O and partitioning result for 2

partitions. A graph having vertices 15606 and Edges 45878

when partitioned using Kmetis and Pmetis produced above

results and above results are showing that when numbers of

partitions are two, Pmetis perform better than Kmetis. It can

be seen that both I/O and Partitioned results for Pmetis

taking less time than Kmetis.

Table 2. Kmetis and Pmetis for 64 way partitioning

Kmetis for 64 partitions

Graph

information

of

vertices
of Edges Partitions

15606 45878 64

64 way

Partitioning

on

Edge

cuts

Balance

2840 1.03

Timing

information

I/O Partitioning Total

0.032 0.014 0.048

Pmetis for 64 partitions

Graph

information

of

vertices
of Edges Partitions

15606 45878 64

64 way

Partitioning

on

Edge

cuts

Balance

2919 1

Timing

information

I/O Partitioning Total

0.033 0.033 0.069

Table 2 shows I/O and partitioning result for 64

partitions. A graph having vertices 15606 and Edges 45878,

when partitioned using Kmetis and Pmetis produced above

results and above results are showing that when numbers of

partitions are 64, Kmetis outperform Pmetis. It can be seen

that both I/O and Partitioned results for Kmetis taking lesser

time than Pmetis.

0

0.05

0.1

2 64 256 512

Ti
m

e
 (

Se
c)

No of Partitions

Partitioning Kmetis Partitioning Pmetis

Journal of Independent Studies and Research – Computing Volume 13 Issue 1 January 2015 63

Table 3. Kmetis and Pmetis for 512 partitioning

Kmetis for 512 partitions

Graph details

of

vertices
of Edges Partitions

15606 45878 512

512 way

Partitioning

on Edge

cuts
Balance

9860 1.05

Timing

information

I/O Time
Partitioning

Time

Total

Time

0.038 0.066 0.109

Pmetis for 512 partitions

Graph details

of

vertices
of Edges Partitions

15606 45878 512

512 way

Partitioning

on Edge

cuts
Balance

6942 1.02

Timing

information

I/O Time
Partitioning

Time

Total

Time

0.04 0.09 0.135

Table 3 shows I/O and partitioning result for 512

partitions. A graph having vertices 15606 and edges 45878

when partitioned using Kmetis and Pmetis produced above

results and above results are showing that when numbers of

partitions are 512, Kmetis outperform Pmetis. It is evident

that both I/O and Partitioned results for Kmetis taking lesser

time than Pmetis. After above experiments, it has been

proved that when number of partitions are high, only

practical approach is Kmetis, while for small number of

partitions, Pmetis is better approach.

VI. CONCLUSION

It has been identified that PowerGraph produce better

partitioning then ParMetis and PT-Scotch. PowerGraph uses

the Vertex cut approach for graph partitioning while

ParMetis and PT-Scotch uses the edge cuts approach. It also

has been identified that ParMetis uses two different

algorithms Kmetis and Pmetis. Both the algorithms were

executed on same dataset and it has been observed that

Kmetis outperformed Pmetis. But for small number of

partitions (e.g. less than or equal to 10), Pmetis performance

is better than Kmetis. For large number of partitions Kmetis

is the practical approach and should be followed.

ParMetis and PT-Scotch use the same edge cut

(Coarsening, initial partitioning and Refinement) strategy for

graph partitioning. ParMetis and PT-Scotch both uses

Recursive bisection algorithms. The key difference which

has been identified between ParMetis and PT-Scotch is

ParMetis applies Recursive bisection algorithm on coarsens

graph only once while PT-Scotch apply this algorithms

recursively on resultant coarsen graph due to which it

perform slower for large graphs and ParMetis performs

better than PT-Scotch for large number of graph.

VII. ACKNOWLEDGEMENT

I am very much thankful to ALLAH who bestowed upon

me the courage and knowledge needed for this study.

I would like to express my deepest appreciation to all

those who provided me the possibility to complete this

research work. I want to appreciate Dr. Saif ur Rehman for

the guidance. He helped me on every difficult track and

provided sufficient feedback to complete this research.

REFERENCES

[1] L. Wang, Y. Xiao, B. Shao and H. Wang “How to

partition a billion-node graph” In Proceedings of 30
th

IEEE International Conference on Data Engineering

(ICDE 2014), 2014.

[2] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson and C.

Guestrin “PowerGraph: Distributed Graph-parallel

Computation on Natural Graphs”, In Proceedings of the

10
th

 USENIX conference on Operating Systems Design

and Implementation, 2012, pp: 17-30.

[3] Y. Tian, A. Balmin, S. A. Corsten, S. Tatikonda and J.

McPherson “From “Think Like a Vertex” to “Think

Like a Graph””, In Proceedings of the VLDB

Endowment (PVLDB), 2013, vol. 7, no. 3.

[4] N. Jain, G. Liao, and T. L. Willke “GraphBuilder: A

Scalable Graph ETL Framework”, In Proceeding of

First International Workshop on Graph Data

Management Experiences and Systems (GRADES '13),

2013, Art. 4.

[5] Y. Low, “GraphLab: A Distributed Abstraction for

Large Scale Machine Learning”, Ph.D. dissertation, Car.

Mel. Univ. PA, USA, 2013.

[6] Gupta “An Evaluation of Parallel Graph Partitioning and

Ordering Softwares on a Massively Parallel Computer”,

IBM T. J. Watson Research Center, NY, Tech. Rep. RC

25008 (W1006-029), 2010.

Journal of Independent Studies and Research – Computing Volume 13 Issue 1 January 2015 64

[7] R. Chen, J. Shi, Y. Chen, H. Guan, B. Zang and H. Chen

“PowerLyra: Differentiated Graph Computation and

Partitioning on Skewed Graphs” Institute of Parallel and

Distributed Systems, Tech. Rep. IPADSTR-2013-001,

2013.

[8] X. Sui, D. Nguyen, M. Burtscher, and K. Pingali

“Parallel Graph Partitioning on Multicore

Architectures”, In Proceedings of the 23
rd

 international

conference on Languages and Compilers for Parallel

Computing (LCPC' 10), 2010, pp: 246-260.

