
Journal of Independent Studies and Research – Computing Volume 13 Issue 2 July-December 2015. 1

Asad Feroz Ali , Dr. Syed Saif ur Rahman

Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST) Karachi, Pakistan
AsadFerozAli@gmail.com

saif.rahman@szabist.edu.pk

21

1,2

1

2

 Abstract - Graph Partitioning is one of the favorite
research topics among researchers since the 70s. It
attracts a diverse group of researchers from various fields
such as engineering, science and mathematics. In the last
decade, the graphs have increased in size to billions of
vertices. Despite the fact that storage devices have become
cheaper, processing these huge spanning graphs is not
possible for a single machine. This call for the need of
partitioning the graph so a group of machines can
perform various parallel calculations on them which
would save time and produce quick results. The research
problem is that the ratio of boundary vertices to interior
vertices increases with the increase in number of parti-
tions for existing partitioning techniques available. To
address this issue, the random edge selection method of
Graph Lab algorithm was replaced with four suggested
edge sorting techniques. The results were compared with
the random edge selection method of Graph Lab using
various performance parameters.

 It is becoming progressively important to retrieve informa-
tion and knowledge from graph datasets [1] as the graph data
sets are increasing in extent [2]. The processing of these huge
graph datasets in different researches is of great significance
and value specifically in the field of computing and biology
for example processing graph datasets of social networks [3]
and that of protein interaction [1]. The calculations and computa-
tions that need to be performed on these data sets can vary from
identification of associations in protein in the field of biology
to performing PageRank [3] and status updates on webpages
and social networks respectively. Performing complex calcula-
tions on these huge datasets would not be possible for a single
system because of memory and time restrictions [4]. Therefore,
these graphs can be partitioned and sent for calculations on to
different machines on a network so each of those machines
could perform the processes on their portion of the graph in paral-
lel and return the result [5]. In graph theory, Graph partitioning

is classified as a NP (Non-deterministic Polynomial-time)-hard
problem [1]. The parallel processing of these graphs requires
every edge or vertex to be processed in context to their surround-
ing neighbors [6]. Hence, it is vital to retain the locality of infor-
mation when the graphs are being partitioned over multiple
machines [7]. When deciding over the pros and cons of edge
and vertex cut partitioning, it is important to know the real
world graphs are usually power-law graphs and edge cut
partitioning does not yield good performance in comparison
to vertex-cut partitioning which divides the edges of a graph
into equal size clusters [3]. The vertices that hold the endpoints
of an edge are placed in the same cluster as the edge [7].

 The communication among machines in a distributed
graph processing environment is dependent on the number of
boundary vertices. To minimize the communication, this study
was conducted with the goal to minimize the number of vertices
at the boundary of the partitions by implementing boundary
vertices sensitive vertex-cut partitioning algorithm. This research
was an empirical research and the focus was to identify and
implement a solution by altering existing balanced p-way
vertex-cut and greedy cut partitioning algorithms used by Power
graph.

 A graph partitioning problem is to cut a graph into two
or more good pieces. In graph theory, a cut is the partition of
the vertices of a graph into two disjoint subsets. Any cut
determines a cut-set, the set of edges that have one endpoint
in each subset of the partition. These edges are said to cross
the cut [1].

A. Graph Partitioning

B. Edge Cut

Boundary Vertices Sensitive Vertex-cut
Partitioning Algorithm

 Keywords - Graph Partitioning, Vertices, Graph Lab

I. INTRODUCTION

 An edge cut assigns vertices to the partitions. Edge cut
optimization aims to reduce the cross communication. In
assigning vertices to partitions, one strives to optimize the
assignment such that frequently co-traversed vertices are
hosted on the same machine [1]. Assume vertex A is assigned
to machine 1 and vertex B is assigned to machine 2. An edge
between the vertices is called a cut edge because its end
points are hosted on separate machines. Traversing this edge

Journal of Independent Studies and Research – Computing Volume 13 Issue 2 July-December 2015.2

 A vertex cut assigns edges to partitions. Cutting a vertex
means storing a subset of that vertex’s adjacency list on each
partition in the graph. Vertex cuts address the hotspot issue
caused by vertices with a large number of incident edges [1]
as shown in figure 2.

as part of a graph query requires communication between the
machines which slows down query processing [3] as shown in
figure 1.

 Pregel [6] is a distributed large-scale graph processing
system that uses vertex-oriented abstraction. It uses message
passing approach for parallel processing and it is a bulk
synchronous message passing abstraction. Pregel uses hash-based
(random) partitioning. GraphLab [4, 5] abstraction expresses
asynchronous, dynamic, graph-parallel computation. Shared-memory
approach is used for parallel processing. Hence, it is a sequential
shared memory abstraction. Graph Lab allows system to choose
when and how to move program state. It also ensures serializability
and data consistency using techniques such as pipelined locking
and data versioning. It achieves fault-tolerance using
Chandy-Lamport snapshot algorithm.

 GraphLab uses distributed FIFO (First in, First out) and
priority scheduling and it is implemented using C++. PowerGraph
[3] clearly factors computation over edges rather than vertices.
It follows the GraphLab data-graph and shared-memory view
of computation which makes the movement of information
hidden to users. PowerGraph follows the commutative, associative
gather concept from Pregel. The partitioning approaches it uses
are balanced p-way Vertex Cut and Greedy Vertex-cut.
GraphLab PowerGraph partitions the graph across machines
using a “vertex separator” approach where edges are assigned
to machines while vertices can span across multiple machines.
GraphLab PowerGraph automatically distributes computation
across different nodes and all the computations run in the
memory. PowerGraph uses two approaches for vertex-cut
namely Random p-way vertex cuts and Greedy Vertex-cuts.

 Random p-way vertex cut selects the edges randomly
from the dataset and then assigns it to any of the partitions
randomly. This can result in any number of edges being assigned
to one partition and remaining to other partitions. Greedy
vertex-cut uses sequential greedy heuristics edge placement
rules for edge. It places the next edge on the machine that
minimizes the conditional expected replication factor.

 This section describes the different vertices sorting
methods that were used to test on different datasets to check
for their performance. The different sorting approaches of the
edges used were as follows:

• Low Degree Vertices to High Degree Vertices
• High Degree Vertices to Low Degree Vertices
• Low Degree Vertices to High Degree Vertices
 Round Robin Approach
• High Degree Vertices to Low Degree Vertices
 Round Robin Approach

C. Vertex Cut

Fig. (1). Edge Cut

III. PROPOSED METHODS
 Graph partitioning is an important pre-processing step
for the processing of distributed graphs [8]. Partitioning is
used to distribute partitions of a graph across memory for
faster processing [9]. Graph partitioning is a NP-Complete
problem.

 The Graph partitioning techniques attempts to ensure
the following characteristics to create good quality partitions:
 • Every partition should be allotted similar number
 of nodes [7]
 • Minimizing the number of cross-partition edges in
 every partition [7]
 • Attain spatial locality for processing the graph [7]
 • Decrease memory contention when graph
 processing is carried out on shared memory [7]
 • Make the most of parallelism [10]
 • Reduce communication/latency [3]

II. RELATED WORK

 Boundary vertices are those vertices which are replicat-
ed i.e. they are present in both the partitions during a vertex
cut. The greater the number of boundary vertices, the more
communication will take place across the partitions for the
replicated vertices so the key motive in graph partitioning is
to reduce the number of boundary vertices [1].

D. Boundary vertices

Fig. (2). Vertex Cut

 Natural Datasets [2] were used to compare the perfor-
mance of different sorting methods mentioned above to the
random approach of Graph Lab. In each of the above
mentioned approaches, the four cases of the Graph Lab
algorithm were used to assign the edges to different partitions
once the input data was sorted using a particular approach.

 The ratio of boundary vertices to total vertices was
calculated for each of those methods and was compared with
the random method of Graph Lab. This ratio is the major
factor in deciding which partitioning method performs well.
The lower the ratio of boundary vertices to total vertices the
better the method it is because the lower ratio indicates that
the replicated nodes are less. In addition to this, the number of
edges should also be considered. The partitioning method
should allot equal number of edges in the partitions. If the
assignment of edges is unequal i.e. if one of the partitions has
more edges to process than the other partition than that
partition would take more time to process the edges. As a
result it would be an uneven distribution of workload.

 In this approach, the edges were sorted in a low degree
to high degree order. To sort the edges in order of low degree
to high degree vertices, all the vertexes of the graph were
noted and their degrees were calculated. This data was kept in
a table which had a list of vertex and their corresponding
degrees. The degree column was sorted in ascending order to
get the table in a form where it showed the vertexes in low to
high degree order. The next step was to read the vertex from
the table one by one and find all edges of the particular vertex
from the data and store it in another table “Sorted Edge List”
which had the edges sorted in order of increasing degree of
the vertex. Once this was done, the nodes were read one by
one from the “Sorted Edge List” table and processed by the
four conditions of the Graph Lab algorithm and assigned to
the partitions i.e. partition 1 or partition 2.

 In this approach, edges were sorted in a high degree to
low degree order using a same approach as described in the
previous method.

equal to the value in the USED column the loop moves to the
next vertex.
1. Create a vertex list with their degrees sorted in ascending
order and store it in AF_SORTED. Add a column USED to
AF_SORTED.
2. [Initialize] Set NROW = Number of Vertex in AF_SORT-
ED and set SORTED_EDGE_LIST as an empty data frame.
3. [Initialize Counter] Set I=1
4. Repeat Steps below until I = NROW
 a) FREQ_VAR = Degree of the current vertex in
 AF_SORTED, VAR1_VALUE = Current Vertex in
 the AF_SORTED vertex column.
 b) [Initialize Counter] Set J=1
 c) Repeat Steps below until J = FREQ_VAR
 1. Find the first edge from A for the vertex
 present in VAR1_VALUE
 2. Add that edge to the SORTED_EDGE_LIST
 data frame
 3. Remove the edge from the data frame A
 4. Increase the value of the USED column in
 AF_SORTED by 1
 5. [Increment Counter] Set J = J+1
 [End of Step c inner loop]
 [Increment Counter] Set I = I+1
[End of Step 4 outer loop]

A. Low Degree Vertices to High Degree Vertices

B. High Degree Vertices to Low Degree Vertices

Pseudo Code

 A is a data frame containing the edges of the graph.
AF_SORTED is the data frame that contains the list of vertex
with their degrees sorted in an ascending order. SORT-
ED_EDGE_LIST is a data frame that contains the edge lists
from the data frame A sorted in increasing order of degree.
NROW is the number of vertexes present in A. Both A and
SORTED_EDGE_LIST contain two columns V1 and V2
which identify the 2 vertex that forms an edge. AF_SORTED
contains 2 columns VERTEX_NAME and DEGREE. An
additional column named USED is added to AF_SORTED.
This column is used for the loop to track how many times a
vertex has been used. Every time a vertex is used, the USED
column is incremented by one. When a vertex’s degree is

Pseudo Code

1. Create a vertex list with their degrees sorted in
descending order and store it in AF_SORTED. Add a
column USED to AF_SORTED.
2. [Initialize] Set NROW = Number of Vertex in
AF_SORTED and set SORTED_EDGE_LIST as an
empty data frame.
3. [Initialize Counter] Set I=1
4. Repeat Steps below until I = NROW
 a) FREQ_VAR = Degree of the current vertex in
 AF_SORTED, VAR1_VALUE = Current Vertex
 in the AF_SORTED vertex column.
 b) [Initialize Counter] Set J=1
 c) Repeat Steps below until J = FREQ_VAR
 1. Find the first edge from A for the vertex
 present in VAR1_VALUE
 2. Add that edge to the
 SORTED_EDGE_LIST data frame
 3. Remove the edge from the data frame A
 4. Increase the value of the USED column in
 AF_SORTED by 1

Journal of Independent Studies and Research – Computing Volume 13 Issue 2 July-December 2015. 3

Journal of Independent Studies and Research – Computing Volume 13 Issue 2 July-December 2015.4

 Low degree to high degree approach was explained
earlier but in round robin approach, every other vertex was
selected by increasing order of degree. Therefore, an edge
was selected from a low degree vertex then rather than select-
ing other edges for the same vertex like it was done earlier,
the next edge was selected from the next vertex which had a
higher degree than the previous vertex. This was done until
reached to the bottom of the table which has the highest
degree vertex and last one is select from that. Then this whole
process was repeated until all the edges had been selected. In
this approach, the edges of the graph were first read by the
program and then only relevant columns of the dataset were
kept such as edges lists and remaining data was removed. As
a result, the dataset with edges of the graph was acquired. To
sort the edges; first of all, the vertices of the graph were noted
and their degrees were calculated. This data was kept in a
table which had a list of vertex and their corresponding
degrees. In this way the degree column was sorted in increas-
ing order to get the table in a form where it showed the vertex-
es in low to high degree. The next step was to read the vertex
from the table one by one in increasing order of degree and to
find the first edge of the particular vertex from the data and
store it in the table “Sorted Edge List” which had the edges
sorted in order of increasing degree with round robin
approach. Then the consecutive rounds of the same approach
were continued until all the vertices had been covered accord-
ing to their degrees. Once this was done, the nodes were read
one by one from the “Sorted Edge List” table and processed
by the four conditions of the Graph Lab algorithm and
assigned to the partitions i.e. partition 1 or partition 2

C. Low Degree Vertices to High Degree Vertices – Round Robin
 Approach

 a) [Initialize Counter] Set J=1
 b) FREQ_VAR = Degree of the current vertex in
 AF_SORTED, VAR1_VALUE = Current Vertex in
 the AF_SORTED vertex column.
 c) Repeat Steps below until J = NROW
 1. If the value of USED =DEGREE for
 current vertex, then
 Skip the remaining commands and move
 to step 6
 [End of If Structure]
 2. Find the first edge from A for the
 vertex present in VAR1_VALUE
 3. Add that edge to the
 SORTED_EDGE_LIST data frame
 4. Remove the edge from the data frame A
 5. Increase the value of the USED column
 in AF_SORTED by 1
 6. [Increment Counter] Set J = J+1
 [End of Step c inner loop]
 [Increment Counter] Set I = I+1
[End of Step 4 outer loop]

D. High Degree Vertices to Low Degree Vertices – Round Robin
 Approach

 MAX_FREQ is the value of the maximum degree that a
vertex has in the table AF_SORTED.
1. Create a vertex list with their degrees sorted in ascending
order and store it in AF_SORTED. Add a column USED to
AF_SORTED.
2. [Initialize] Set NROW = Number of Vertex in AF_SORT-
ED, set SORTED_EDGE_LIST as an empty data frame and
MAX_FREQ as the maximum value of degree in the
AF_SORTED table
3. [Initialize Counter] Set I=1
4. Repeat Steps below until I = MAX_FREQ

Pseudo Code

1. Create a vertex list with their degrees sorted in descending
order and store it in AF_SORTED. Add a column USED to
AF_SORTED.
2. [Initialize] Set NROW = Number of Vertex in AF_SORT-
ED, set SORTED_EDGE_LIST as an empty data frame and
MAX_FREQ as the maximum value of degree in the
AF_SORTED table
3. [Initialize Counter] Set I=1
4. Repeat Steps below until I = MAX_FREQ
 a) [Initialize Counter] Set J=1
 b) FREQ_VAR = Degree of the current vertex in
 AF_SORTED, VAR1_VALUE = Current Vertex in
 the AF_SORTED vertex column.
 c) Repeat Steps below until J = NROW
 1. If the value of USED =DEGREE for current
 vertex, then
 Skip the remaining commands and move to step 6
 [End of If Structure]
 2. Find the first edge from A for the vertex present
 in VAR1_VALUE

Pseudo Code

 In this approach, all the steps were same as in the previ-
ous round robin approach but the degree table was sorted in
high to low degree instead of low to high degree as in previ-
ous method. Then the round robin approach was carried out
as explained in the previous section.

 5. [Increment Counter] Set J = J+1
 [End of Step c inner loop]
 [Increment Counter] Set I = I+1
[End of Step 4 outer loop]

The different parameters used to calculate the performance of
the sorting methods were:
• Boundary Vertices to Total Vertices Ratio
• Ratio of edges in each partitions
• Ratio of nodes in each partition

The boundary vertices were calculated by finding the same
vertices in the two partitions. The ratio is then calculated by
dividing boundary vertices by the total vertices present in the
dataset. The method which results in the lowest ratio would
be considered better than other methods.

A. Boundary Vertices to Total Vertices Ratio

 This ratio was calculated by dividing the number of
edges contained in one partition to the number of edges
present in the other partition. A ratio closer to 1 would
indicate that both partition contained equal number of edges
i.e. edge distribution was even. The method which results in a
ratio closer to 1 would be considered better than the other
methods.

B. Ratio of edges in each partitions

 To calculate this parameter, the individual vertices
present in each partition were counted and divided by the
number of vertices present in the other partition. A ratio of 1
would indicate that vertices were evenly distributed in the two
partitions. The method which resulted in a ratio closer to 1
would be considered better than the other methods.

C. Ratio of vertices in each partition

 Once the partitioning methods divided the edges in the
two partitions, the numbers of rows presented in each
partition were divided to find this required ratio. This ratio is
important because it shows the equality of partition i.e. how
many edges each of the partitions received for processing.
The results from the bar plot shows that none of the methods
resulted in a ratio of 1. Random Method gave the ratio close

 The figure 3 above shows that the ratios achieved by
random method were the highest which is 0.39 and 0.4 where-
as the ratios achieved by high to low degree method were the
lowest which is 0.23 and 0.25 followed by Low to High
degree method. The results of round robin approach of both
the low to high degree method and high to low degree method
were close to each other with values of 0.38 and 0.39 and both
of them varied slightly. Apart from that the difference in
values achieved for both the datasets is marginal.

B. Ratio of Edges in Each Partition

 The boundary vertices to total vertices ratio was calcu-
lated by finding the number of edges that were duplicated in
both the partitions and then dividing it by total number of
vertices. The purpose of calculating this parameter was to
identify which method resulted in the least ratio.

A. Boundary Vertices to Total Vertices Ratio

 To calculate the performance of the methods, two Natu-
ral datasets were used from Large Natural Dataset Collection
by Stanford University. They were snapshots of the Gnutella
peer-to-peer file sharing network taken on two different days
of August 2002 i.e. 5th and 6th. The numbers of vertices or
nodes contained were 8,846 and 8,717 respectively whereas
the edges they contained were 31,839 and 31,525 respective-
ly. The datasets were imported in a program created in R
language and all the computation and sorting methods were

 After obtaining the list of edges assigned to different
partitions by the program i.e. both random methods from
Graph Lab and proposed methods, the performance parameter
values for both the data sets were evaluated and plotted
individually for each parameter for both the datasets for all
the five methods.

Fig. (3). Bar plot for boundary vertices to total vertices ratio

IV. PERFORMANCE PARAMETERS

V. EXPERIMENTAL EVALUATION

VI. RESULTS

 3. Add that edge to the SORTED_EDGE_LIST
 data frame
 4. Remove the edge from the data frame A
 5. Increase the value of the USED column in
 AF_SORTED by 1
 6. [Increment Counter] Set J = J+1
 [End of Step c inner loop]
 [Increment Counter] Set I = I+1
[End of Step 4 outer loop]

tested using that program. The program was used to calculate
performance parameter of the Graph Lab’s random method of
edge selection to the four proposed methods for each of the
two datasets. The pseudo code for that program has been
described in detail in the earlier section.

Journal of Independent Studies and Research – Computing Volume 13 Issue 2 July-December 2015. 5

Journal of Independent Studies and Research – Computing Volume 13 Issue 2 July-December 2015.6

 When the partitioning method divided the edges into
two partitions, unique vertices present among all the edges in
each partition were divided with each other to find the distri-
bution of vertices among the partitions. This is also an import
performance parameter because the closer the ratio is to 1 the
better the distribution of vertices.

C. Ratio of Vertices in Each Partition

 The High to Low Degree method gave the highest ratio
which is why the boundary vertices for this method were the
least. Since the edge distribution by this method is almost five
to seven times higher among the two partitions, the partition
with the lower number of edges resulted in less replicated
nodes hence less boundary vertices.

 Among all the four proposed method, high to low degree
approach resulted in the lowest value for boundary vertices to
total vertices ratio which was the objective of this study but
the distribution of edges and vertices for this approach were
uneven i.e. both the edge and vertices distribution ratios were
higher according to the results which showed that it resulted
in an uneven distribution of edges and vertices across the two
partitions. The edges and vertices distribution for round robin
approach of high to low degree method was same in case of
edges distribution and higher by a ratio of 0.3 in vertices
distribution but it had a high boundary vertices to total
vertices ratios of 0.38 and 0.39 close to the random method
which had ratios of 0.39 and 0.40 for the two data sets.

 For future work, the high to low degree and the round
robin approach for high to low degree can be further modified
so it can give better results for edge and vertices distribution
as well as better results for boundary vertices as well. The
major reason of one of the partitions having a larger number
of vertices was the condition in the greedy heuristics of Graph
Lab algorithm which stated that if one of the vertices of an
edge currently in consideration is already present in one of the
partitions then that edge should be assigned to that particular

methods remained above that ratio with the round robin
approach of high to low degree and low to high degree gave
similar results for both the datasets i.e. 1.7.

 The ratios achieved by low to high degree method for
both the datasets were 2.1 and the ratios achieved by high to
low degree method were 3 and 3.4. Since the high to low
degree method resulted in a 5:1 and 7:1 ratio for distribution
of edges, this is the cause for the low vertices ratio. One of the
partitions has 5 to 7 times higher edges than the other
partition; hence, it would have higher vertices than the other
partition resulting in a low ratio of 0.3.

Fig. (4). Bar plot for ratio of Edges distribution

Fig. (5). Bar plot for ratio of Vertices Distribution

VII. CONCLUSION AND FUTURE WORK

to 1 but even then the ratio is 2.3 which mean that one of the
partitions received 2.3 times more edges to process than the
other partition. Among the proposed methods, High to Low
Degree Round Robin method gave a result closer to the
random method which is 2.4 followed by Low to High Degree
Round Robin method which gave a ratio of 2.6. The High to
Low Degree method approaches gave the highest ratio which
is why the boundary vertices for this method were the least as
highlighted in the previous graph.

 The results from the bar plot in figure 4 shows that none
of the methods reached a ratio of 1. Random method gave the
ratio close to 1 but even then the ratio is 2.3 which mean that
one of the partitions received 2.3 times more edges to process
than the other partition. Among the proposed methods, High
to Low Degree Round Robin method gave a result closer to
the random method which is 2.4 followed by Low to High
Degree Round Robin method which gave a ratio of 2.6.

 The results from the bar plot in figure 5 shows that none
of the method resulted in a ratio of 1. The closest any method
reached to 1 was random partitioning method which resulted
in a ratio of 1.4 for both the datasets. All the four proposed

[1]

[2]

[3]

[4]

 First of all, I would like to thank GOD, my family
(because of whom I have been here) and I would like to take
this opportunity to express my profound gratitude and deep
regard to my supervisor Dr. Syed Saif Ur Rahman for stimu-
lating suggestions and constant encouragement throughout
the duration of this Study.

[5]

[6]

[7]

[8]

[9]

[10]

Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Gues-
trin, and J. M. Hellerstein, “GraphLab: A New Parallel
Framework for Machine Learning,” In Proceedings of
Conference on Uncertainty in Artificial Intelligence
(UAI), Catalina Island: CA, 2010.
G. Czajkowski, “Pregel: A System for Large-scale
Graph Processing,” In Proceedings of the 2010 ACM
SIGMOD International Conference on Management of
Data (SIGMOD 2010), 2010, pp: 135-146.
X. Sui, D. Nguyen, M. Burtscher, and K. Pingali,
“Parallel Graph Partitioning on Multicore Architec-
tures,” In Proceedings of the 23rd International Confer-
ence on Languages and Compilers for Parallel
Computing (LCPC 2010), 2010, pp: 246-260.
D. Crankshaw, A. Dave, R. S. Xin, J. E. Gonzalez, M. J.
Franklin, and Ion Stoica. "The GraphX Graph Process-
ing System," Res. Rep., AMP lab, Univ. of California:
Berkley, 2013.
F. Bourse, M. Lelarge, and M. Vojnovic. "Balanced
graph edge partition," In Proceedings of the 20th ACM
SIGKDD International Conference On Knowledge
Discovery And Data Mining (KDD 2014), 2014, pp:
1456-1465.
L. Golab, M. Hadjieleftheriou, H. Karloff and B. Saha,
“Distributed Data Placement via Graph Partitioning,”
CoRR, vol. abs/1312.0285, 2013.

REFERENCES

ACKNOWLEDGEMENT

partition which caused this uneven partition distribution and
hence high vertices and edges distribution ratios.

Journal of Independent Studies and Research – Computing Volume 13 Issue 2 July-December 2015. 7

C-E. Bichot and P. Siarry, Graph Partitioning. New
Jersey: Wiley, 2011.
Stanford Large Network Dataset Collection. [Online].
Available from: https://snap.stanford.edu/data/.
J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Gues-
trin, “PowerGraph: Distributed Graph-parallel Computa-
tion on Natural Graphs,” In Proceedings of 10th USENIX
symposium on Operating Systems Designs and Imple-
mentation (OSDI’12), 2012, pp: 17-30.
Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A.
Kyrola, and J. M. Hellerstein, “Distributed GraphLab: A
Framework for Machine Learning and Data Mining in
the Cloud,” In Proceedings of VLDB Endowment., 2012,
vol. 5, no. 8, pp: 716-727.

© Author(s) 2015. CC Attribution 4.0 License. (http://creativecommons.org/licenses/by-nc/4.0/)

This article is licensed under the terms of the Creative Commons Attribution Non-Commercial License which
permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

