
Improving Query Response Time for
Graph Data Using Materialization

Abdul Waheed , Dr. Saif ur Rahman2

2

1

1

1,2

 Abstract - Graphs are used in many disciplines, from
communication networks, biological, social networks includ-
ing maths and other fields of science. This is the latest and
most important field of computer science today. In this
research, the authors have worked on the materialization
to improve the query response of graph data. The large
graph dataset have been divided into two categories; one
contains the topological data and other contains the aggre-
gate data and both are accessed via a PAM (Predicate
Aggregate Materialization) engine which plays an interme-
diary role. PAM engine stores the query results and it checks
whether the query is new or already processed every time
the query appears. If it is found already processed than it
just get the results which are materialized and if it finds a
new query than it goes for the extraction of data from
required datasets. After completion of process, PAM engine
materialize the extracted data for reuse. The technique
works and it reduces the processing time and improves
response time.

 Graph processing and optimization is one of the most
active areas of research today. Graphs are valuable because
they give brief statistics in a way that is easy for every person
to understand. Graphs are used all over the world for effective
data representation purpose. It is computationally challenging
to manage and analyse graphs to support effective decision
making graph processing. It is time and resource consuming
process. There are many algorithms, models and techniques
which are developed for accessing and processing graphs and
are still continued developing today.

 In recent years, the area of graph has got wide attention
and outstanding growth especially in the social applications
like facebook, linkedin, twitter, instagram and foursquare. It
has increased the usage of graphs. These networks are modelled
as large graphs with vertices representing entities and edges

as relationship between entities. These applications have got
much popularity after the web 2.0. Numerous distributed graph
processing systems have been proposed such as graph-lab, and
power-graph. These systems are vertex-centric and follow a
bulk synchronous parallel model (where vertices send messages
to each other through their connections or ids). They are tailored
and efficient for graph processing operators that require iterative
graph traversal such as page rank, shortest path, bipartite match-
ing and semi-clustering. However, it is costly to support graph
computation. In fact, it will incur high overhead cost for
message (carrying the attributes values) passing across the
graph to find the vertices or edges with the same attribute
values.

 In this research, the authors have focused on the graph
processing and to decrease the graph query response time and
have determine a significant technique that optimizes the query
response by materializing the intermediate results of graph
data.

 In this section, authors have briefly discussed about the
techniques and technologies used in research for improving
response time of graph data.

 Keywords - graph database, materialization, Neo4j, SQL
Server, attributed data, topological data, PAM Engine.

 Materialization is used with large databases. It stores or
cashes the processed query results. Materialization is widely
used technique mostly with data warehousing or online analyti-
cal processing to extract or select query data from large datasets
in a minimum time. Materialization stores processed data that
reused when required. The data warehouse contains huge
datasets of organizational data and querying these large datasets
is time consuming task.

 One solution used in data warehouses to query these large
datasets in a minimum time and to improve performance is to
create summaries and indexes on data. Indexes are also useful
for improving performance but both are combinely used.
Summaries are the aggregates (sum, max, min and count) of

A. Materialization

Journal of Independent Studies and Research – Computing Volume 13 Issue 2 July-December 2015.22

Shaheed Zulfikar Ali Bhutto Institute of Science and Technology (SZABIST) Karachi, Pakistan
mudassar.iqb@gmail.com
rafi.muhammad@gmail.com

I. INTRODUCTION

II. RELATED CONCEPTS

 Materialization increases the response time but the
benefit provided by materialization have a cost. As the mate-
rialization stores the processed results, when the primary data
is changed then the materialized data need to be changed or
updated. It is more useful in data warehousing or online
analytical processing databases, where the processed results
are changed, edited or updated on a scheduled time. As shown
in Figure 1, every time the user made a query, it gets data
from already processed aggregated joined and summarized
database which is faster, reduces the processing and improves
the performance. User query does not reach at the primary
database. The worst case is, if the summarized data is not
updated with primary database a cost of maintenance or upda-
tion is charged every time the primary database gets updated.
In a data warehouse, a special technical person is employed
which takes care of any problem and timely updates in both
databases. More than one summarized or materialized views
can be crated for achieving better results.

 Considering the Figure 2 which is more suitable for
online tractional processing (OLTP), but when it comes to
data warehousing, this technique is not efficient because it
increases the processing. Having a benefit of no maintenance
or upgradation and every time the user gets updated data
directly from the primary database. The main problem in this
technique is if the dataset is very large than it takes a lot of
time.

 In Figure 3, the overall conclusion is shown. What would
happens if when we go for the materialized data and what
happens if we direct make a query data without using materi-
alization? The Figure 3 shows that there are three tables on
the left which are not materialized and if user get data, it pays
the every time for aggregation while using the materialized
view on the right the user pays the onetime cost and upgrada-
tion cost only if the primary data gets changes. We can
perform the materialization on a single table by aggregating
its values, or can perform materialization on multiple tables
by applying joins or combining both using aggregates and
joins. Whatever the technique used, it works and it saves time
which can be understood from the figure given below:

B. Materialization Cost

Fig. (1). Materialized Structure of Database

Fig. (2). Non Materialized Structure of Database

Fig. (3). Materialization and Non Materialization Comparisons

 In this section, the steps and flow of the PAM Engine
have been discussed in detail with the help of figures and
charts.
A. PAM Engine Characteristics

Journal of Independent Studies and Research – Computing Volume 13 Issue 2 July-December 2015. 23

key values. These pre-calculated aggregates are stored in a
separate database or tables which are summarized data or mate-
rialized view. For example, we can create a summary data
which contain the sums of salaries and expenses by department
or years.

III. PREDICATED AGGREGATE
MATERIALIZATION (PAM)

 The characteristics of PAM engine is given below
 • PAM engine is designed using java.
 • PAM engine is capable of getting data from
 multiple databases.
 • PAM engine reduces the execution time of query.
 • PAM engine can only used for data extraction.
 • PAM engine can be used in windows and web
 applications.

 Finally, we created two separate instances for Neo4j
database; one has all the data including attributed and
topological information and other one only contains the
topological information as describes in figure 4. Once we got
the data loaded into a relational database, for first phase we
store all the attributed and topological data into Neo4j and
second phase separate the topological data and store it in
graph oriented database. We extracted topological data and
load it into Neo4j using csv files, so that we upload this data
into graph database using cypher query [1].

 The PAM engine will be beneficial in many environ-
ments where the repeated queries are performed regularly
such as online News websites/ search engines e,g. Consider-
ing the News scenario, thousands of peoples search for the
same entities or objects, if data is fetched from databases
every time, it will be more time consuming but if we use the
PAM engine, then it will be more beneficial and queries can
be responded much faster. Further, it may be considered that
the entities and objects are stored in different databases as
entities in graph database while the objects in relational
database. PAM engine also combines the results accessed
from both databases.

B. PAM Benefits

 The DBLP data set is available in raw xml format publi-
cally. The DBLP schema contains the basic columns entities
like author id publication id and publication type. The basic
relationship is between publication id, author id and
published by. The indexes are built on two columns publica-
tion key and author key. The Preprocessing details about the
DBLP are given below.

C. DBLP Schema

 Dividing a large problem into small sub problems
become easier to solve. The same approach we have used here
in order to process large dataset of DBLP. To process a large
graph dataset requires lots of time, storage and processing
power, but to divide the large datasets into small datasets may
not minimize the storage requirements but definitely have
improved the processing time and have required less process-
ing power.

E. Divide and Conquer

D. Conversion from XML to Graph Database

Journal of Independent Studies and Research – Computing Volume 13 Issue 2 July-December 2015.24

Fig. (4). Conversion from XML to Relational and Graph Databases

 The DBLP data set is available in raw xml format publi-
cally. The whole process of converting the DBLP data into
graph data and relational data is given below as;

 In order to obtain appropriate format of data, we first
pre-processed the data. We produced two different formats of
data; one for column oriented database which contained
attributed information and other for graph oriented database
which contained topological information between nodes.

 DBLP is available as a raw xml format, so we used
BaseX xml database to load xml database into our xml data.
After loading xml database, we extracted the required infor-
mation by using xquires then we loaded data into relational
database. We generated the csv files from an xml database
and uploaded the data from those csv files into relational
database. It is easy to transform data into any form from
relational model.

 For instance, we required topological data as well as
attributed data to store in two separate databases. Therefore,
we have to pre-process data to achieve such a form of the
data. In this regard, we first loaded data into a relational
database (Microsoft SQL Server). We loaded data into three
tables named DBLPaut, DBLPpub and DBLPnet. The
DBLPaut table contains id (auto generated incremental) and
name of author, DBLPpub table contains id (which is the id of

specific publication in DBLP dataset), name of publication,
year of publication and type of publication. Finally the table
DBLPnet contains the relational information between
DBLPaut and DBLPpub.

F. Intermediate Results Materialization

Fig. (5). Non Database Division

Fig. (6). Predicate Aggregate Materialization Engine
Working Diagram

 If the query is new than it process query and after
processing it stores the query and results, otherwise if the
same query appears again, it will not go for the further
processing, it only gets the results from child table reference
to header table Ids, which are already stored or materialized in
header table in database. If query does not contain the where
clause than it will directly go on the next step of the PAM
engine which gets the data from the Neo4j using cypher query
as shown in Figure 7.

 The Next step of PAM engine is to get the topological
data from Neo4j using cypher query. The Neo4j database
contain only topological data which means no Ids, so the Ids
are passed as extracted in first step based on where clause
data (means the attributed data), depends on if where clause
exists in query. After the successful cypher query execution,
the results are stored in a CSV file as there may be millions or
billions of records based on query so all the data can’t be
cashed so a CSV file will contains all the extracted data from
Neo4j. After that, the same process is repeated here of materi-
alization. It stores the query in header table and results in a
child table with header reference. In this step, the results are
in CSV file. So it is imported to SQL Server by using bulk
insertion method in a separate table and each time a query
appears, it checks in the materialized header table, if data
exist it escape the query execution and directly retrieves the
results from child table by using the header query reference.
If query does not exist than it will be processed as given
above and it will go for the next step. The complete flow chart

 Figure 5 shows that we have processed and divided a
large dataset of graph into two categories. We have divided
the graph data by preprocessing the aggregate values and
separate the topological values. The large DBLP datasets is
processed and first part is separated which contain the
topological information such as (Ids, counts). We can say it
contains the aggregated data or summarized data which has
benefited us in further processing when have queried this
data. The second part which contains the attributed data such
as (Ids, Names) is separated and converted to SQL server.

 We have materialized the intermediate results of query
and reuse it when the same query appears again. This has
reduced the processing and improves the query response time.
As a sample, we have used a DBLP dataset as read-only
dataset of graph. DBLP is a standard dataset contains the
information of publications and authors we have converted it
into graph data in Neo4j and divide it into two parts as
discussed above; one is topological data remain in Neo4j and
other is attributed data which is in MS SQL Server and write
an intermediary program in Java to be used in PAM engine
which gets input query and data from both databases as given
in the Figure 6. The PAM engine is consisted on three steps
which are discussed in detail as below; when it is executed
after getting query input, first part of the PAM engine gets the
attributed data based on where clause from the MS SQL
Server by executing SQL queries, once the data based on the
where clause is extracted from MS SQL Server then PAM
engine materialize the query and results in a separate table in
SQL Server the query with parameters is stored separately in
header table and the results are stored in child table with
header query reference, which benefits when we go for the
selection next time. Every time query appears it checks in
header table whether the query is already executed or a new
query is appears for execution.

Journal of Independent Studies and Research – Computing Volume 13 Issue 2 July-December 2015. 25

Fig. (7). PAM Engine Execution Flow Chart

G. Softwares Required

 The below given Table 1 and Table 2 shows the compari-
son between the direct query and using PAM Engine with
number of fetched records and time taken by each query. The
time is given in minutes and seconds format the difference
column in the right showing the time saved while using the
materialized approach.

Query 1:

MATCH (p:`publication`)-[:`publishedby`]-> (a:`author`)
WHERE p.year = "2014" and p.type = "article"
RETURN a.Id as author, count(*) as pcount
order by a.Id

Query 2:

MATCH (p:`publication`)-[:`publishedby`]->(a:`author`)
RETURN a.Id as author, p.year as year, p.type as type,
count (*) as pcount
order by a.Id, p.year, p.type

 Following software's are required for system
 implementation.
 • Neo4j
 • SQL Server
 • Operating System
 • Java(TM) SE Runtime Environment

 These below queries are sample queries. The Query1 is
written in cypher language. The query executed on a Neo4j
database. The author Florian Holzschuher proved experimen-
tally that the Neo4j is best when the database gets larger.
Neo4j has shown nearly a constant performance when scaling
from 2,000 to 10,000 people [2].

Table 1. Comparison results by Direct Query and by using PAM Engine

Query 1 205402 10:50.2 205400 07:50.2 03:00.0

Query 1 205402 11:32.3 205400 08:32.3 03:00.0

Query 1 205402 09:15.2 205400 08:15.2 01:00.0

Queries Records Time in Records Time in Time in
 Returned MM:SS.0 Returned MM:SS.0 MM:SS.0

Direct Query
Results From

Graph Database

First Time Using
PAM Engine

Difference

Journal of Independent Studies and Research – Computing Volume 13 Issue 2 July-December 2015.26

is given below in Figure 7. The third and final step of the
PAM engine is to combine both query results of first step and
second step which both are now in SQL server format using
join query of SQL server we can easily extract data. After the
successful extraction of results, it gives the required output
and terminates the PAM engine.

IV. RESULTS

 The following queries are model queries taken on the
basis related to database. The DBLP database contains the
publication data, so we have selected the queries which
generate all the publication count by author and other which
count the publication type articles of year 2014.

 Its division into two parts and the comparison of time
taken for processing is given below. The query has two filters
one is year and second is publication types. The user wants to
return only the author Id and publication count order by
author Id.

 The Query 2 is simple having no filter it only returns the
author Id, year of publication and total publications order by
Author Id, year of Publication, and Type of publication

Journal of Independent Studies and Research – Computing Volume 13 Issue 2 July-December 2015. 27

Fig. (8). Query Processing Time Comparison Chart

 The given Table 3 shows the comparison between First
materialized query execution time and if the same query
executed second time. The difference column in the right
shows the time saved while using the reusability materialized
approach.

 The Figure 8 shows the execution time of queries when
we have performed the experiment directly from DBLP
dataset or using materialized data and reusing the material-
ized data. The Blue color shows the time which was taken
when have executed the cypher query directly on Neo4j
DBLP database, the chart shows it is the most time taking
query.

 Materialization idea has always works with some
minimum cost of updation or modification with almost all
databases. Kamel et al. worked on semi materialization to
execute repeated quires in a minimum time with efficiency on
relational database management systems. The technique is to
store repeated or most frequent data that shows the intermedi-
ate level of query execution. The most frequent data is used to
efficiently build the output of query; thus, is an easy way to
maintain results. Then the author compares his results with
the other two techniques commonly used to materialize the
repeated execution of queries which are full materialization
and query modification. The authors has proved systematical-
ly and shown by simulation. The results have shown that the
technique of semi materialization has improved query
response not only for simple queries but also for complex
queries, views and joins, under the certain working circum-
stances [3].

 Semi materialization deals with relational databases
while in our research we have used the graph databases. We
have pre-process the databases and divide it in two parts as
topological and aggregate values.

 To query databases, there are two important algorithms
discussed by Shekhar et al. The algorithms are Materialization
and hierarchical routing. The author says these algorithms are
very useful in the applications like shortest path, intelligence
transportation system (ITS) and travelling sales man problem
(TSP). As the graph database size is growing day by day, the
materialization technique and hierarchical routing algorithm
pre computer and stores the results of shortest path view these
results can be reused any time which increases the perfor-
mance of processing large graph queries [4].

 Graphs, network, and Web mining has got much attention
in recent years. A bundle of literature has been published in
the area of graph processing web and social network analysis.
Emerging applications face the need to store and query data
that are naturally described as graphs. Building Business
intelligence (BI) solution for graph data is a difficult task.

 Red color shows the time which was taken when we have
first executed the query in a PAM engine and the query is
materialized the difference between the direct query and using
materialized is little here but in this step the materialization
cost is also included which is onetime cost. The next Green
color shows the big difference when we have executed the
same query second time in materialized environment. The
difference is huge. It improves the response time and decreas-
es the processing time up to 60% which was the goal of this
study which have been achieved using the materialization of
intermediate results.

Table 2. Comparison results by Direct Query and by using PAM
Engine mparison results by Direct Query and by using PAM Engine

Query 2 4893292 20:32.2 4893290 11:16.7 09:15.5
Query 2 4893292 21:12.9 4893290 12:37.4 08:35.5
Query 2 4893292 21:49.7 4893290 11:20.5 10:29.2

Queries Records Time in Records Time in Time in
 Returned MM:SS.0 Returned MM:SS.0 MM:SS.0

Direct Query
Results From

Graph Database

First Time Using
PAM Engine

Differ-
ence

Table 3. Comparison results by Direct Query and by using PAM Engine

Query 1 205400 07:50.2 205400 00:35.9 07:14.3
Query 1 205400 08:32.3 205400 00:34.8 07:57.5
Query 1 205400 08:15.2 205400 00:38.3 07:36.9
Query 2 4893290 11:16.7 4893290 01:15.9 10:00.8
Query 2 4893290 12:37.4 4893290 01:14.8 11:22.5
Query 2 4893290 11:20.5 4893290 01:18.3 10:02.2

Queries Records Time in Records Time in Time in
 Returned MM:SS.0 Returned MM:SS.0 MM:SS.0

First Time Using
PAM Engine

If Query Appears
Again in

PAM Engine

Differ-
ence

V. RELATED WORK

 Relational databases are frequently criticized for being
unsuitable for managing graph data. Graph databases are
gaining popularity but they have not yet reached the same
maturity level with relational systems. [5]

 Materialization of data worked as a cache in main
memory. A materialized view delivers fast access to user data.
The materialized view need to be updated when primary data
modified or changed. It is just like a cache memory. Cache
becomes dirty when the data it copies is updated or modified.
A materialized view becomes dirty every time the primary
base relations are changed or modified. Sometimes it is costly
to maintain a materialized view and get it updated with the
primary relational data but in most of the cases it is cheaper
and beneficial especially when the data is repeatedly called. A
materialized view should not be completely changed when
primary relation are updated but there should be in a mecha-
nism which recognize and changes only those parts of materi-
alized view which are changed but not completely material-
ized view [6].

 Abadi et al. study the use of early and late materialization
in the C-Store Databases. They focus on standard ware-
house-style queries: read-only workloads, with selections,
aggregations, and joins. The authors run experiments to deter-
mine when one approach dominates the other and develop an
analytical model that can be used; for example, in a query
optimizer to select a materialization strategy. The results show
that on some workloads, late materialization can be an order
of magnitude faster than early-materialization while on other
workloads; early-materialization outperforms late-materializa-
tion by an order of magnitude [7].

 Zagorac et al. produced a materialization technique for
structured web data such as Amazon and to improve the web
search which helps to answer multi domain queries by access-
ing the heterogeneous web based data [8]. There are so many
other techniques for materialization like view materialization
author described an incremental maintenance algorithm for
views over semi-structured, or schema less, data. The
algorithm identifies the needed view changes, based on the
information available from the view specification, the update
operation, the database state after the update, and some auxil-
iary data structures that are generated when populating the
view [9].

 Zhao et al. have communicated the difficulty of support-
ing warehousing and Online Analytical Processing databases
for large multidimensional networks. The authors have exact-
ly calculated the problem and proposed a new data warehous-
ing model for the problem. The author proposed a Graph cube
model which was specially developed to improve the aggrega-
tion of large graph networks and multi- dimensional attributes

 By using the materialization of intermediate results for
graph technique, we have improved the query response and
minimize the processing time and cost for graph data. We
have also used a division technique and divided a large graph
dataset into two parts and apply some processing while divid-
ing. We have used a PAM engine which gets data from both
databases and gives the required output. The materialization
of intermediate results has worked as it improved up to 60%
time on reusability.

 There is always space for improvement, as in our work-
ing model we have stored the whole query, so when the same
query appears again with the same parameters than we have
got the improved response time but there should be a mecha-
nism which partially checks if any of parameter is matched
then it will not go for that parameter and get only the remain-
ing parameters from primary database and then store all in a
materialized form.

 I would like to express my special thanks of gratitude to
my supervisor Dr. Saif-ur-Rahman as well as SZABIST
Karachi for giving me this opportunity to do research on the
topic of Improving Query Response Time for Graph Data
Using Materialization which helped me in doing a lot of
research and I learnt new things. I am really thankful.

[10]. Chen et al. inspects the probability to apply multi-di-
mensional processing on networked data, and designed a
Graph Online Analytical Processing framework, which is
categorized into two main classes which are topological
Online Analytical Processing and informational Online
Analytical Processing [11]. Aksu et al. worked on the dense
graph and identified sub graphs of high structure using the k
core matrix. The author said that the graph importance is
increased day by day and the social network graphs content
gets increased but the topologies changes dynamically, the
author challenged and proposed that not to just materialize the
dense graph but also maintain them and keep updated contin-
uously. The authors said that the graph data is now increased
and cannot processed on a single server machine and on its
limited memory. The author proposed a distributed algorithm
for dense graph view. The algorithm store and process graph
on a horizontally scale [12].

Journal of Independent Studies and Research – Computing Volume 13 Issue 2 July-December 2015.28

VI. CONCLUSION AND FUTURE WORK

ACKNOWLEDGEMENTS

REFERENCES

M. Adnan "Hybrid approach for storing multi-attributed
graph data," submitted for publication. **

[1]

F. Holzschuher and R. Peinl, “Performance of graph
query languages: comparison of cypher, gremlin and
native access in Neo4j” In Proceedings of the Joint
EDBT/ICDT Workshops (EDBT '13), 2013, pp.195-204.
M. N. Kamel and S. B. Davidson, “Semi-Materialization:
A Technique For Optimizing requently Executed Queries,”
Data & Knowledge Engineering, vol. 6, no. 2, pp. 101-123,
1991.
S. Shekhar, A. Fetterer and B. Goyal, “Materialization
Trade-Offs In Hierarchical Shortest Path Algorithms,” In Ad-
vances in Spatial Databases (Lecture Notes in Computer Sci-
ence), M. Scholl and A. Voisard, Eds. Berlin Heidelberg,
Springer, 2005, pp. 94-111.
D. Bleco and Y. Kotidis, “Graph Analytics on Massive
Collections of Small Graphs” In Proceedings of International
Conference on Extending Database Technology (EDBT),
2014, pp. 523-534.
A. Gupta and I. S. Mumick, “Maintenance of Materialized
Views: Problems, Techniques, and Applications,” In Materi-
alized views, Cambridge, MA, MIT Press, 1999, pp.
145-157.
D. J. Abadi, D. S. Myers, D. J. DeWitt, and S. R. Madden,
“Materialization Strategies In A Column-Oriented Dbms,”
In Proceedings of IEEE 23rd International Conference
on Data Engineering, 2007, pp. 466 – 475..

[2]

[3]

[4]

[5]

[6]

[7]

S. Zagorac and R. Pears, “Web Materialization Formulation:
Modelling Feasible Solutions” in Database and Expert
Systems Applications (Lecture Notes in Computer Science),
H. Decker, L. Lhotska, S. link, M. Spies and R. R. Wagner,
Eds. Switzerland, Springer Int. Pub., 2014, pp. 366-374.
S. Abitebouly, J. McHugh, M. Rys, V. Vassalos and J.
L. Wiener, “Incremental Maintenance for Materialized
Views over Semi Structured Data” In Proceedings of
the 24th International Conference on Very Large Data
Bases (VLDB ‘98), 1998, pp. 38-49.
P. Zhao, X. Li, D. Xin and J. Han, “Graph Cube: On
Warehousing and OLAP Multidimensional Networks,”
In Proceedings of the 2011 ACM International Confer-
ence on Management of data (SIGMOD '11), 2011, pp.
853-864.
C. Chen, X. Yan, F. Zhu, J. Han and P. S. Yu, “Graph
OLAP: A Multidimensional Framework for Graph Data
Analysis,” Knowledge and Information Systems, vol.
21, no. 1, pp. 41-63, 2009.
H. Aksu, M. Canim, Y-C. Chang, I. Korpeoglu and O.
Ulusoy, “Distributed k - Core View Materialization and
Maintenance for large Dynamic Graphs,” IEEE Trans-
actions on Knowledge and Data Engineering, vol. 26,
no. 10, pp. 2439-2452, 2014.

[8]

[9]

[10]

[11]

[12]

Journal of Independent Studies and Research – Computing Volume 13 Issue 2 July-December 2015. 29

© Author(s) 2015. CC Attribution 4.0 License. (http://creativecommons.org/licenses/by-nc/4.0/)

This article is licensed under the terms of the Creative Commons Attribution Non-Commercial License which
permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.

