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 Abstract - Graph Partitioning is one of the favorite 
research topics among researchers since the 70s. It 
attracts a diverse group of researchers from various fields 
such as engineering, science and mathematics. In the last 
decade, the graphs have increased in size to billions of 
vertices. Despite the fact that storage devices have become 
cheaper, processing these huge spanning graphs is not 
possible for a single machine. This call for the need of 
partitioning the graph so a group of machines can 
perform various parallel calculations on them which 
would save time and produce quick results. The research 
problem is that the ratio of boundary vertices to interior 
vertices increases with the increase in number of parti-
tions for existing partitioning techniques available. To 
address this issue, the random edge selection method of 
Graph Lab algorithm was replaced with four suggested 
edge sorting techniques. The results were compared with 
the random edge selection method of Graph Lab using 
various performance parameters.

 It is becoming progressively important to retrieve informa-
tion and knowledge from graph datasets [1] as the graph data 
sets are increasing in extent [2]. The processing of these huge 
graph datasets in different researches is of great significance 
and value specifically in the field of computing and biology 
for example processing graph datasets of social networks [3] 
and that of protein interaction [1]. The calculations and computa-
tions that need to be performed on these data sets can vary from 
identification of associations in protein in the field of biology 
to performing PageRank [3] and status updates on webpages 
and social networks respectively. Performing complex calcula-
tions on these huge datasets would not be possible for a single 
system because of memory and time restrictions [4]. Therefore, 
these graphs can be partitioned and sent for calculations on to 
different machines on a network so each of those machines 
could perform the processes on their portion of the graph in paral-
lel and return the result [5]. In graph theory, Graph partitioning 

is classified as a NP (Non-deterministic Polynomial-time)-hard 
problem [1]. The parallel processing of these graphs requires 
every edge or vertex to be processed in context to their surround-
ing neighbors [6]. Hence, it is vital to retain the locality of infor-
mation when the graphs are being partitioned over multiple 
machines [7]. When deciding over the pros and cons of edge 
and vertex cut partitioning, it is important to know the real 
world graphs are usually power-law graphs and edge cut 
partitioning does not yield good performance in comparison 
to vertex-cut partitioning which divides the edges of a graph 
into equal size clusters [3]. The vertices that hold the endpoints 
of an edge are placed in the same cluster as the edge [7].

 The communication among machines in a distributed 
graph processing environment is dependent on the number of 
boundary vertices. To minimize the communication, this study 
was conducted with the goal to minimize the number of vertices 
at the boundary of the partitions by implementing boundary 
vertices sensitive vertex-cut partitioning algorithm. This research 
was an empirical research and the focus was to identify and 
implement a solution by altering existing balanced p-way 
vertex-cut and greedy cut partitioning algorithms used by Power 
graph. 

 A graph partitioning problem is to cut a graph into two 
or more good pieces. In graph theory, a cut is the partition of 
the vertices of a graph into two disjoint subsets. Any cut 
determines a cut-set, the set of edges that have one endpoint 
in each subset of the partition. These edges are said to cross 
the cut [1]. 

A. Graph Partitioning

B. Edge Cut

Boundary Vertices Sensitive Vertex-cut
Partitioning Algorithm

 Keywords - Graph Partitioning, Vertices, Graph Lab

I. INTRODUCTION

 An edge cut assigns vertices to the partitions. Edge cut 
optimization aims to reduce the cross communication. In 
assigning vertices to partitions, one strives to optimize the 
assignment such that frequently co-traversed vertices are 
hosted on the same machine [1]. Assume vertex A is assigned 
to machine 1 and vertex B is assigned to machine 2. An edge 
between the vertices is called a cut edge because its end 
points are hosted on separate machines. Traversing this edge 



Journal of Independent Studies and Research – Computing Volume 13 Issue 2 July-December 2015.2

 A vertex cut assigns edges to partitions. Cutting a vertex 
means storing a subset of that vertex’s adjacency list on each 
partition in the graph. Vertex cuts address the hotspot issue 
caused by vertices with a large number of incident edges [1] 
as shown in figure 2.

as part of a graph query requires communication between the 
machines which slows down query processing [3] as shown in 
figure 1.

 Pregel [6] is a distributed large-scale graph processing 
system that uses vertex-oriented abstraction. It uses message 
passing approach for parallel processing and it is a bulk 
synchronous message passing abstraction. Pregel uses hash-based 
(random) partitioning. GraphLab [4, 5] abstraction expresses 
asynchronous, dynamic, graph-parallel computation. Shared-memory 
approach is used for parallel processing. Hence, it is a sequential 
shared memory abstraction. Graph Lab allows system to choose 
when and how to move program state. It also ensures serializability 
and data consistency using techniques such as pipelined locking 
and data versioning. It achieves fault-tolerance using 
Chandy-Lamport snapshot algorithm.

 GraphLab uses distributed FIFO (First in, First out) and 
priority scheduling and it is implemented using C++. PowerGraph 
[3] clearly factors computation over edges rather than vertices. 
It follows the GraphLab data-graph and shared-memory view 
of computation which makes the movement of information 
hidden to users. PowerGraph follows the commutative, associative 
gather concept from Pregel. The partitioning approaches it uses 
are balanced p-way Vertex Cut and Greedy Vertex-cut. 
GraphLab PowerGraph partitions the graph across machines 
using a “vertex separator” approach where edges are assigned 
to machines while vertices can span across multiple machines. 
GraphLab PowerGraph automatically distributes computation 
across different nodes and all the computations run in the 
memory. PowerGraph uses two approaches for vertex-cut 
namely Random p-way vertex cuts and Greedy Vertex-cuts.

 Random p-way vertex cut selects the edges randomly 
from the dataset and then assigns it to any of the partitions 
randomly. This can result in any number of edges being assigned 
to one partition and remaining to other partitions. Greedy 
vertex-cut uses sequential greedy heuristics edge placement 
rules for edge. It places the next edge on the machine that 
minimizes the conditional expected replication factor. 

 This section describes the different vertices sorting 
methods that were used to test on different datasets to check 
for their performance. The different sorting approaches of the 
edges used were as follows:

• Low Degree Vertices to High Degree Vertices
• High Degree Vertices to Low Degree Vertices
• Low Degree Vertices to High Degree Vertices 
 Round Robin Approach
• High Degree Vertices to Low Degree Vertices 
 Round Robin Approach

C. Vertex Cut

Fig. (1). Edge Cut

III. PROPOSED METHODS
 Graph partitioning is an important pre-processing step 
for the processing of distributed graphs [8]. Partitioning is 
used to distribute partitions of a graph across memory for 
faster processing [9]. Graph partitioning is a NP-Complete 
problem. 

 The Graph partitioning techniques attempts to ensure 
the following characteristics to create good quality partitions:
 • Every partition should be allotted similar number
   of nodes [7]
 • Minimizing the number of cross-partition edges in  
  every partition [7]
 • Attain spatial locality for processing the graph [7]
 • Decrease memory contention when graph 
  processing is carried out on shared memory [7]
 • Make the most of parallelism [10]
 • Reduce communication/latency [3]

II. RELATED WORK

 Boundary vertices are those vertices which are replicat-
ed i.e. they are present in both the partitions during a vertex 
cut. The greater the number of boundary vertices, the more 
communication will take place across the partitions for the 
replicated vertices so the key motive in graph partitioning is 
to reduce the number of boundary vertices [1].

D. Boundary vertices

Fig. (2). Vertex Cut



 Natural Datasets [2] were used to compare the perfor-
mance of different sorting methods mentioned above to the 
random approach of Graph Lab. In each of the above 
mentioned approaches, the four cases of the Graph Lab 
algorithm were used to assign the edges to different partitions 
once the input data was sorted using a particular approach. 

 The ratio of boundary vertices to total vertices was 
calculated for each of those methods and was compared with 
the random method of Graph Lab. This ratio is the major 
factor in deciding which partitioning method performs well. 
The lower the ratio of boundary vertices to total vertices the 
better the method it is because the lower ratio indicates that 
the replicated nodes are less. In addition to this, the number of 
edges should also be considered. The partitioning method 
should allot equal number of edges in the partitions. If the 
assignment of edges is unequal i.e. if one of the partitions has 
more edges to process than the other partition than that 
partition would take more time to process the edges. As a 
result it would be an uneven distribution of workload.

 In this approach, the edges were sorted in a low degree 
to high degree order. To sort the edges in order of low degree 
to high degree vertices, all the vertexes of the graph were 
noted and their degrees were calculated. This data was kept in 
a table which had a list of vertex and their corresponding 
degrees. The degree column was sorted in ascending order to 
get the table in a form where it showed the vertexes in low to 
high degree order. The next step was to read the vertex from 
the table one by one and find all edges of the particular vertex 
from the data and store it in another table “Sorted Edge List” 
which had the edges sorted in order of increasing degree of 
the vertex. Once this was done, the nodes were read one by 
one from the “Sorted Edge List” table and processed by the 
four conditions of the Graph Lab algorithm and assigned to 
the partitions i.e. partition 1 or partition 2.

 In this approach, edges were sorted in a high degree to 
low degree order using a same approach as described in the 
previous method.

equal to the value in the USED column the loop moves to the 
next vertex.
1. Create a vertex list with their degrees sorted in ascending 
order and store it in AF_SORTED. Add a column USED to 
AF_SORTED.
2. [Initialize] Set NROW = Number of Vertex in AF_SORT-
ED and set SORTED_EDGE_LIST as an empty data frame. 
3. [Initialize Counter] Set I=1
4. Repeat Steps below until I = NROW
 a) FREQ_VAR = Degree of the current vertex in  
 AF_SORTED, VAR1_VALUE = Current Vertex in
 the  AF_SORTED vertex column.
 b) [Initialize Counter] Set J=1
 c) Repeat Steps below until J = FREQ_VAR
  1. Find the first edge from A for the vertex
   present in VAR1_VALUE
  2.  Add that edge to the SORTED_EDGE_LIST  
   data frame
  3.  Remove the edge from the data frame A
  4.  Increase the value of the USED column in  
   AF_SORTED by 1
  5. [Increment Counter] Set J = J+1
   [End of Step c inner loop]
  [Increment Counter] Set I = I+1
[End of Step 4 outer loop]

A.  Low Degree Vertices to High Degree Vertices

B.  High Degree Vertices to Low Degree Vertices

Pseudo Code

 A is a data frame containing the edges of the graph. 
AF_SORTED is the data frame that contains the list of vertex 
with their degrees sorted in an ascending order. SORT-
ED_EDGE_LIST is a data frame that contains the edge lists 
from the data frame A sorted in increasing order of degree. 
NROW is the number of vertexes present in A.  Both A and 
SORTED_EDGE_LIST contain two columns V1 and V2 
which identify the 2 vertex that forms an edge. AF_SORTED 
contains 2 columns VERTEX_NAME and DEGREE. An 
additional column named USED is added to AF_SORTED. 
This column is used for the loop to track how many times a 
vertex has been used. Every time a vertex is used, the USED 
column is incremented by one. When a vertex’s degree is 

Pseudo Code

1. Create a vertex list with their degrees sorted in   
descending order and store it in AF_SORTED. Add a  
column USED to AF_SORTED.
2. [Initialize] Set NROW = Number of Vertex in   
AF_SORTED and set SORTED_EDGE_LIST as an   
empty data frame. 
3. [Initialize Counter] Set I=1
4. Repeat Steps below until I = NROW
  a) FREQ_VAR = Degree of the current vertex in  
  AF_SORTED, VAR1_VALUE = Current Vertex  
  in the AF_SORTED vertex column.
  b) [Initialize Counter] Set J=1
  c) Repeat Steps below until J = FREQ_VAR
   1. Find the first edge from A for the vertex  
    present in VAR1_VALUE
   2. Add that edge to the    
    SORTED_EDGE_LIST data frame
   3. Remove the edge from the data frame A
   4. Increase the value of the USED column in  
    AF_SORTED by 1
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 Low degree to high degree approach was explained 
earlier but in round robin approach, every other vertex was 
selected by increasing order of degree. Therefore, an edge 
was selected from a low degree vertex then rather than select-
ing other edges for the same vertex like it was done earlier, 
the next edge was selected from the next vertex which had a 
higher degree than the previous vertex. This was done until 
reached to the bottom of the table which has the highest 
degree vertex and last one is select from that. Then this whole 
process was repeated until all the edges had been selected. In 
this approach, the edges of the graph were first read by the 
program and then only relevant columns of the dataset were 
kept such as edges lists and remaining data was removed. As 
a result, the dataset with edges of the graph was acquired. To 
sort the edges; first of all, the vertices of the graph were noted 
and their degrees were calculated. This data was kept in a 
table which had a list of vertex and their corresponding 
degrees. In this way the degree column was sorted in increas-
ing order to get the table in a form where it showed the vertex-
es in low to high degree. The next step was to read the vertex 
from the table one by one in increasing order of degree and to 
find the first edge of the particular vertex from the data and 
store it in the table “Sorted Edge List” which had the edges 
sorted in order of increasing degree with round robin 
approach. Then the consecutive rounds of the same approach 
were continued until all the vertices had been covered accord-
ing to their degrees. Once this was done, the nodes were read 
one by one from the “Sorted Edge List” table and processed 
by the four conditions of the Graph Lab algorithm and 
assigned to the partitions i.e. partition 1 or partition 2

C. Low Degree Vertices to High Degree Vertices – Round Robin 
 Approach

 a) [Initialize Counter] Set J=1
 b) FREQ_VAR = Degree of the current vertex in 
 AF_SORTED, VAR1_VALUE = Current Vertex in  
 the AF_SORTED vertex column.
 c) Repeat Steps below until J = NROW
   1. If the value of USED =DEGREE for 
   current vertex, then
   Skip the remaining commands and move  
   to step 6
   [End of If Structure]
   2. Find the first edge from A for the   
   vertex present in VAR1_VALUE
   3. Add that edge to the    
   SORTED_EDGE_LIST data frame
   4. Remove the edge from the data frame A
   5. Increase the value of the USED column  
   in AF_SORTED by 1
   6. [Increment Counter] Set J = J+1
   [End of Step c inner loop]
  [Increment Counter] Set I = I+1
[End of Step 4 outer loop]

D. High Degree Vertices to Low Degree Vertices – Round Robin 
    Approach

 MAX_FREQ is the value of the maximum degree that a 
vertex has in the table AF_SORTED.
1. Create a vertex list with their degrees sorted in ascending 
order and store it in AF_SORTED. Add a column USED to 
AF_SORTED.
2. [Initialize] Set NROW = Number of Vertex in AF_SORT-
ED, set SORTED_EDGE_LIST as an empty data frame and 
MAX_FREQ as the maximum value of degree in the 
AF_SORTED table
3. [Initialize Counter] Set I=1
4. Repeat Steps below until I = MAX_FREQ

Pseudo Code

1. Create a vertex list with their degrees sorted in descending 
order and store it in AF_SORTED. Add a column USED to 
AF_SORTED.
2. [Initialize] Set NROW = Number of Vertex in AF_SORT-
ED, set SORTED_EDGE_LIST as an empty data frame and 
MAX_FREQ as the maximum value of degree in the 
AF_SORTED table
3. [Initialize Counter] Set I=1
4. Repeat Steps below until I = MAX_FREQ
 a) [Initialize Counter] Set J=1
 b) FREQ_VAR = Degree of the current vertex in  
 AF_SORTED, VAR1_VALUE = Current Vertex in  
 the AF_SORTED vertex column.
 c) Repeat Steps below until J = NROW
  1. If the value of USED =DEGREE for current  
  vertex, then
  Skip the remaining commands and move to step 6
  [End of If Structure]
  2. Find the first edge from A for the vertex present  
  in VAR1_VALUE

Pseudo Code

 In this approach, all the steps were same as in the previ-
ous round robin approach but the degree table was sorted in 
high to low degree instead of low to high degree as in previ-
ous method. Then the round robin approach was carried out 
as explained in the previous section.

   5. [Increment Counter] Set J = J+1
   [End of Step c inner loop]
  [Increment Counter] Set I = I+1
[End of Step 4 outer loop]



The different parameters used to calculate the performance of 
the sorting methods were:
• Boundary Vertices to Total Vertices Ratio
• Ratio of edges in each partitions
• Ratio of nodes in each partition

The boundary vertices were calculated by finding the same 
vertices in the two partitions. The ratio is then calculated by 
dividing boundary vertices by the total vertices present in the 
dataset. The method which results in the lowest ratio would 
be considered better than other methods.

A.  Boundary Vertices to Total Vertices Ratio

 This ratio was calculated by dividing the number of 
edges contained in one partition to the number of edges 
present in the other partition. A ratio closer to 1 would 
indicate that both partition contained equal number of edges 
i.e. edge distribution was even. The method which results in a 
ratio closer to 1 would be considered better than the other 
methods.

B.  Ratio of edges in each partitions

 To calculate this parameter, the individual vertices 
present in each partition were counted and divided by the 
number of vertices present in the other partition. A ratio of 1 
would indicate that vertices were evenly distributed in the two 
partitions. The method which resulted in a ratio closer to 1 
would be considered better than the other methods.

C.  Ratio of vertices in each partition

 Once the partitioning methods divided the edges in the 
two partitions, the numbers of rows presented in each 
partition were divided to find this required ratio. This ratio is 
important because it shows the equality of partition i.e. how 
many edges each of the partitions received for processing. 
The results from the bar plot shows that none of the methods 
resulted in a ratio of 1. Random Method gave the ratio close 

 The figure 3 above shows that the ratios achieved by 
random method were the highest which is 0.39 and 0.4 where-
as the ratios achieved by high to low degree method were the 
lowest which is 0.23 and 0.25 followed by Low to High 
degree method. The results of round robin approach of both 
the low to high degree method and high to low degree method 
were close to each other with values of 0.38 and 0.39 and both 
of them varied slightly. Apart from that the difference in 
values achieved for both the datasets is marginal.

B.  Ratio of Edges in Each Partition

 The boundary vertices to total vertices ratio was calcu-
lated by finding the number of edges that were duplicated in 
both the partitions and then dividing it by total number of 
vertices. The purpose of calculating this parameter was to 
identify which method resulted in the least ratio.

A. Boundary Vertices to Total Vertices Ratio

 To calculate the performance of the methods, two Natu-
ral datasets were used from Large Natural Dataset Collection 
by Stanford University. They were snapshots of the Gnutella 
peer-to-peer file sharing network taken on two different days 
of August 2002 i.e. 5th and 6th. The numbers of vertices or 
nodes contained were 8,846 and 8,717 respectively whereas 
the edges they contained were 31,839 and 31,525 respective-
ly. The datasets were imported in a program created in R 
language and all the computation and sorting methods were 

 After obtaining the list of edges assigned to different 
partitions by the program i.e. both random methods from 
Graph Lab and proposed methods, the performance parameter 
values for both the data sets were evaluated and plotted 
individually for each parameter for both the datasets for all 
the five methods.

Fig. (3). Bar plot for boundary vertices to total vertices ratio

IV. PERFORMANCE PARAMETERS

V. EXPERIMENTAL EVALUATION

VI. RESULTS

  3. Add that edge to the SORTED_EDGE_LIST  
  data frame
  4. Remove the edge from the data frame A
  5. Increase the value of the USED column in  
  AF_SORTED by 1
  6. [Increment Counter] Set J = J+1
  [End of Step c inner loop]
 [Increment Counter] Set I = I+1
[End of Step 4 outer loop]

tested using that program. The program was used to calculate 
performance parameter of the Graph Lab’s random method of 
edge selection to the four proposed methods for each of the 
two datasets. The pseudo code for that program has been 
described in detail in the earlier section.
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 When the partitioning method divided the edges into 
two partitions, unique vertices present among all the edges in 
each partition were divided with each other to find the distri-
bution of vertices among the partitions. This is also an import 
performance parameter because the closer the ratio is to 1 the 
better the distribution of vertices.

C.  Ratio of Vertices in Each Partition

 The High to Low Degree method gave the highest ratio 
which is why the boundary vertices for this method were the 
least. Since the edge distribution by this method is almost five 
to seven times higher among the two partitions, the partition 
with the lower number of edges resulted in less replicated 
nodes hence less boundary vertices.

 Among all the four proposed method, high to low degree 
approach resulted in the lowest value for boundary vertices to 
total vertices ratio which was the objective of this study but 
the distribution of edges and vertices for this approach were 
uneven i.e. both the edge and vertices distribution ratios were 
higher according to the results which showed that it resulted 
in an uneven distribution of edges and vertices across the two 
partitions. The edges and vertices distribution for round robin 
approach of high to low degree method was same in case of 
edges distribution and higher by a ratio of 0.3 in vertices 
distribution but it had a high boundary vertices to total 
vertices ratios of 0.38 and 0.39 close to the random method 
which had ratios of 0.39 and 0.40 for the two data sets.

 For future work, the high to low degree and the round 
robin approach for high to low degree can be further modified 
so it can give better results for edge and vertices distribution 
as well as better results for boundary vertices as well. The 
major reason of one of the partitions having a larger number 
of vertices was the condition in the greedy heuristics of Graph 
Lab algorithm which stated that if one of the vertices of an 
edge currently in consideration is already present in one of the 
partitions then that edge should be assigned to that particular 

methods remained above that ratio with the round robin 
approach of high to low degree and low to high degree gave 
similar results for both the datasets i.e. 1.7.

 The ratios achieved by low to high degree method for 
both the datasets were 2.1 and the ratios achieved by high to 
low degree method were 3 and 3.4. Since the high to low 
degree method resulted in a 5:1 and 7:1 ratio for distribution 
of edges, this is the cause for the low vertices ratio. One of the 
partitions has 5 to 7 times higher edges than the other 
partition; hence, it would have higher vertices than the other 
partition resulting in a low ratio of 0.3.

Fig. (4). Bar plot for ratio of Edges distribution

Fig. (5). Bar plot for ratio of Vertices Distribution

VII. CONCLUSION AND FUTURE WORK

to 1 but even then the ratio is 2.3 which mean that one of the 
partitions received 2.3 times more edges to process than the 
other partition. Among the proposed methods, High to Low 
Degree Round Robin method gave a result closer to the 
random method which is 2.4 followed by Low to High Degree 
Round Robin method which gave a ratio of 2.6. The High to 
Low Degree method approaches gave the highest ratio which 
is why the boundary vertices for this method were the least as 
highlighted in the previous graph.

 The results from the bar plot in figure 4 shows that none 
of the methods reached a ratio of 1. Random method gave the 
ratio close to 1 but even then the ratio is 2.3 which mean that 
one of the partitions received 2.3 times more edges to process 
than the other partition. Among the proposed methods, High 
to Low Degree Round Robin method gave a result closer to 
the random method which is 2.4 followed by Low to High 
Degree Round Robin method which gave a ratio of 2.6.

 The results from the bar plot in figure 5 shows that none 
of the method resulted in a ratio of 1. The closest any method 
reached to 1 was random partitioning method which resulted 
in a ratio of 1.4 for both the datasets. All the four proposed 
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