
Tariq Javid Ali, Pervez Akhtar, Muhammad Faris, Idris Mala, Syed Saood Zia

Hamdard Institute of Engineering and Technology, Hamdard University, Karachi-74800, Pakistan
Computer Science Department, Usman Institute of Technology, Karachi-75300, Pakistan

Computer Engineering Department, SSUET, Karachi-75300, Pakistan
tariq.javid@hamdard.edu.pk

imala@uit.edu
szia@ssuet.edu.pk

541 2 3

1,2,3

4

5
2

 Abstract—This paper presents implementation of
Discrete Fourier Transform and Orthogonal Discrete
Wavelet Transform in Python computer programming
language. The Fourier Transform is a fundamental signal
processing tool whereas the Wavelet Transform is a
powerful and advanced signal processing tool. Both have
applications in numerous scientific and engineering disci-
plines. Our implementation aims to develop a deeper
understanding of these transformations by presenting
detailed coding steps to generate the frequency-domain
and wavelet-domain outputs for selected example
time-domain input signals. The results generated from
developed program code are compared using built-in
functions with similar matches have shown the successful
implementation.

 Python has emerged recently as a computer program-
ming language of choice for science and engineering
disciplines. Despite presence of famous powerful computer
languages, for example C/C++/C# and Java, and mathemati-
cal tools, for example MATLAB and MAPLE, this computer
programming language is making its way towards new
heights [1-2]. The language is open source with an easily
understandable syntax and is supported by a large community
of programmers all around the world. Recently, many courses
have replaced their adoption of computer language by
Python, for example [3] replaced Java with Python as the
Python code is easier for the novice learner. The major
strengths of this programming language are modularity and
ability to integrate with different computer programming
languages [4].

 Discrete Fourier Transform (DFT) is a fundamental
signal processing tool. On the other hand, Discrete Wavelet
Transform (DWT) is a powerful and advanced signal process-
ing tool. Both tools have a wide range of applications in many

scientific and engineering disciplines. These are implemented
in almost all computer programming languages and mathe-
matical software tools. Therefore, learning to use application
of DFT and DWT on time-domain input signals to generate
corresponding frequency-domain and wavelet-domain
representations is an established exercise for students in
science, technology, engineering, and mathematics (STEM)
programs. Use of computer programs and mathematical
software tools is a common practice to perform lengthy calcu-
lations.

 The purpose of this study is to explore how to learn
fundamental and advanced mathematical formulations, for
example DFT and orthogonal DWT, by using a prospective
computer programming language. The work in this paper
aims to strengthen the understanding of DFT by implement-
ing circular convolution and Fourier transformation and also
to strengthen the understanding of DWT by implementing
orthogonal Wavelet transformation in Python. A step-by-step
approach is presented which is useful for readers even if they
are unfamiliar with this computer programming language. In
addition, examples are presented to use Numpy [5] built-in
Fast Fourier Transform (FFT) function to compute the DFT
and PyWavelets [6] built-in function to compute the DWT.
The resulting spectrum and scalogram from selected example
time-domain signals by using the developed Python program
code are compared with outputs using built-in functions.
Similar matches show a successful implementation of both
DFT and DWT.

 In this section, a review of related mathematical expres-
sions with corresponding matrix views is presented from
[7-8]. This section and most of the examples used in this study
are selected from this very useful reference.

Journal of Independent Studies and Research – Computing Volume 14 Issue 1 Jan-June 2016 1

Implementation of Discrete Fourier Transform and
Orthogonal Discrete Wavelet Transform in Python

 Keywords—DFT; DWT; FFT; Python; Convolution

I. INTRODUCTION

1

4

5

II. CONCEPTS AND MATHEMATICAL EXPRESSIONS

 The circular convolution is closely related to DFT and
A. Discrete Fourier Transform

where H is called the circular convolution operator associated
with hn. The result (Hx)n is also a length-N sequence. The
related matrix view is given below.

for any two length-N sequences xn = {x0, x1, … , xN—1} and
hn = {h0, h1, … , hN—1}, it is defined as

where H is a circulant matrix with hn as its first column. The
DFT of a length-N sequence xn is defined as

 The inner product is sum of element-by-element multi-
plication of two vectors. This means result of inner product is
a scalar quantity. A sequence represents a signal or vector.
The inner product of two given sequences, gn = {g0, g1, … ,
gN—1} and hn = {h0, h1, … , hN—1} is given by

B. Discrete Wavelet Transform

Journal of Independent Studies and Research – Computing Volume 14 Issue 1 Jan-June 20162

= =

==
1

0

1

0
mod)(mod)()(

N

k

N

k
NknkNknkn xhhxHx (1)

(2)=

1

1

0

021

201

110

NNN

N

x

x
x

hhh

hhh
hhh

Hx

(3)}1,,1 ...,0{,)(
1

0

==
=

NkWxFxX
N

n

kn
Nnkk

(4)=

1

1

0

)1(1

12

2
1

1
111

N
N

N
N

N

N
NN

x

x
x

WW

WW
Fx

 The IDFT of a length-N sequence is defined as

(5)}1,...,1,0{,1 1

0

=
=

NnWX
N

x
N

k

kn
Nkn

where. The related matrix view of IDFT is
given below.

knNjkn
N eW)/2(=

(6)X

WW

WW
N

x

N
N

N
N

N
NN

n =

2)1()1(

)1(2

1

1
111

1

(7)++ ...=>=<
n

nnnnnn hghghghg 1100,

==
Zk Zk

knkknk hgghgh (8)

 The convolution of two sequences gn and hn is given by

 The J-level orthogonal DWT of a sequence xn and
IDWT are given by

where g(J) and h(l) are called scaling sequence and wavelets,
respectively. The is called coarse projection or scaling
coefficients whereas are called finer detail projections or
wavelet coefficients. For 3-level, i.e., J = 3, both scaling and
wavelet coefficients using (9) and (10) are given by

)(J

)(l

(9)Zkgx
Zn

J
knn

J
k J= ,)(

2
)(

(10)},, ...2,1{,)(
2

)(Jlhx
Zn

l
knn

l
k l=

(11)
=

+=
J

l Zk

l
kn

l
k

Zk

J
kn

J
kn lJ ggx

1

)(
2

)()(
2

)(

nknn
Zn

knnk hxhx >=<=)1(
2

)1(
2

)1(
11 ,

nknn
Zn

knnk hxhx >=<=)2(
2

)2(
2

)2(
22 ,

nknn
Zn

knnk hxhx >=<=)3(
2

)3(
2

)3(
33 ,

nknn
Zn

knnk gxgx >=<=)3(
2

)3(
2

)3(
33 ,

 The complete set of basis sequences for 3-level is given by

 For 3-level, Haar basis sequences using (12) and (13)
are given by

 The Haar basic sequences at J-level are given by

where is Kronecker delta sequence and is given by

Zkknknknkn
ghhh= },,,{)3(

2
)3(
2

)2(
2

)1(
2 3321

(12)
=

=
12

0
2/

)(

2
1

J

k
knJ

J
ng

(13)=
==

12

2

12

0
2/

)(

1

1

2
1

l

l

l

k
kn

k
knl

l
nh

=
=

otherwise
n

,0
0,1

n

where Xk is called the spectrum of sequence xn and
 is a unit-modulus Eigen sequence. “… the DFT
arises from identifying the unit-modulus Eigen sequences of
the circular convolution operator …” [7]. The related matrix
view is given below.

knNjkn
N eW)/2(=

n

 In following sections, above equations are implemented
in the Python computer programming language.

 The Numpy module provides N-dimensional array data
type, called ND array. The Python program code developed to
implement the circular convolution is shown in Figure 1. It
starts with comment lines which begin with number sign (#).
The two code lines starting with import keyword find and
initialize Python modules Numpy and Matplotlib.pylab and
assign local names np and plt respectively. The Matplotlib [9]
is a library for creating 2D plots in Python with pylab
interface i.e., Matplotlib.pylab which provides functions
similar to MATLAB.

 The function comp_circ_conv computes circular convo-
lution and plots input sequence xn, filter hn, and resulting
circular convolution (Hx)n by calling the function draw_se-
qn_and_filt. In function comp_circ_conv, Python built-in
function len is used to find length L and M of filter hn and
input sequence xn respectively. This step is required to deter-
mine the value N which is used for zero-padding both input
tsequences.

 The variables filtN, seqnN, and Hx are defined as
N-point numpy.ndarray sequences. These sequences are
initialized with all elements set equal to zero. Both filtN and
seqnN are assigned filt and seqn sequences up to length of filt,
L, and length of seqn, M, respectively. This is accomplished
using statement filtN[:L] = filt[:] which assigns first L mem-
bers of filtN array to members of filt array. In this way,
elements of filtN array are members of filt array from 0 to
L-1, and remaining members are zeros from L to N-1. This is
repeated for seqnN which after assignment has members of
seqn from 0 to M-1, and zeros from M to N-1. Note, the
indexing in Python follows C/C++ which starts from 0,
instead of 1 as in MATLAB. This means members of an
N-point array are accessed using index from 0 to N-1.

 In first example, the function comp_circ_conv input
arrays are xn = {4, 5, 6, 2} and hn = {0.5, 2, 0.5} which are
assigned to arrays seqn and filt, respectively. These arrays are

III. PRELIMINARY IMPLEMENTATION

assigned to new arrays seqnN = {4, 5, 6, 2, 0, 0} and filtN =
{0.5, 2, 0.5, 0, 0, 0}, refer Figure 1 for plots of zero-padded
input sequences. The filtN array is flipped and rolled by using
statements filtNflip = filtN[::-1,...] and filtNflip = np.roll(filt-
Nflip,1) respectively. The output array filtNflip after execu-
tion of these two statements is equal to {0.5, 0, 0, 0.5, 2}. At
this point, first row of (2), i.e., {h0, h5, … , h1} for N = 6 is
available as filtNflip.

 A for-loop implements circular convolution in (1) and
(2). The loop index is variable k which takes values in
range(N) i.e., from 0 to N-1. Note, the colon operator (:) in the
for-loop statement tells Python a code block follows. Indenta-
tion is very important and used exclusively in this computer
language for identification and execution of code blocks. The
concept is similar to use of braces f g in C/C++. After comple-
tion of for- loop, Hx holds result of circular convolution.

 At this point, the function draw_seqn_and_filt is called
with three parameters: input sequence xn, filter hn and circular
convolution Hx. The definition of this function is shown in
Python code in Figure 1. This code is similar to MATLAB
figure generating code. It generates three subplots: (a) input
sequence xn, (b) filter hn and (c) circular convolution Hx.
These subplots are shown in Figure 1.

 To use the developed program code in Figure 1, add
following three code lines at the end of program. Once
program code executes it generates subplots and assigns
result of circular convolution to H1 due return Hx statement
in the function comp_circ_conv.

 x = np.array([4,5,6,2])
 h = np.array([0.5,2,0.5])
 H1 = comp_circ_conv(h,x)

 To compute linear convolution which is equivalent to
circular convolution for N ≥ L +M – 1, Numpy provides a
function numpy.convolve. This function can be used as
follows to compute convolution and verify results of earlier
developed program code. It has verified for example present-
ed in this section that both results are same.

 Now, a thoughtful look at the code in Figure 1 reveals
that most instructions are assignment statements for variables
to hold and organize data. The steps to compute the circular
convolution are followed which include flip and shift one
sequence and at each shift compute sum of product with other
sequence. In developing program code, there is a need to
zero-pad sequences to compute full convolution. A for-loop
performs sequence shift and compute sum of product to
generate Hx array.

example np.

 The inner product of two sequences is computed by
defining inprod function as follows. The def keyword is used
for function definition. Use of colon at end of a Python
statement and indentation at start of a statement are very
important for programming in Python. Indentation is used for
a block of statements and a colon identifies start of a code
block.
 def inprod(g,h):
 N = len(g)
 tmp = 0
 for n in range(N):
 tmp += g[n] * h[n]
 return tmp

 To write a program code for inner product in (7) and
make related plots, there is a need to import Numpy and
Matplotlib.pyplot. This leads to write two Python import
statements below.
 import numpy as np
 import matplotlib.pyplot as plt

 Above import statements provide functionality availa-
ble in Numpy module and Pylab Matplotlib interface. The
Numpy is short for Numeric Python which provides
N-dimensional array functionality to Python basic installa-
tion. The Pylab interface is a set of functions in Matplotlib
library which provides functionality similar to MATLAB to
make 2D plots. An import statement, for example ‘import
numpy as np’ is executed in two steps which are (1) initialize
a module, for example numpy, and (2) define a name, for

()

()

()

()7
)3(

743
)3(

321
)2(

1
)1(

22
1
22

1
2
1

2
1

++ ...=

++ ...=

+=

=

nnn

nnnnn

nnnnn

nnn

g

h

h

h

...

Journal of Independent Studies and Research – Computing Volume 14 Issue 1 Jan-June 2016 3

Journal of Independent Studies and Research – Computing Volume 14 Issue 1 Jan-June 20164

example np.

 The inner product of two sequences is computed by
defining inprod function as follows. The def keyword is used
for function definition. Use of colon at end of a Python
statement and indentation at start of a statement are very
important for programming in Python. Indentation is used for
a block of statements and a colon identifies start of a code
block.
 def inprod(g,h):
 N = len(g)
 tmp = 0
 for n in range(N):
 tmp += g[n] * h[n]
 return tmp

 To write a program code for inner product in (7) and
make related plots, there is a need to import Numpy and
Matplotlib.pyplot. This leads to write two Python import
statements below.
 import numpy as np
 import matplotlib.pyplot as plt

 Above import statements provide functionality availa-
ble in Numpy module and Pylab Matplotlib interface. The
Numpy is short for Numeric Python which provides
N-dimensional array functionality to Python basic installa-
tion. The Pylab interface is a set of functions in Matplotlib
library which provides functionality similar to MATLAB to
make 2D plots. An import statement, for example ‘import
numpy as np’ is executed in two steps which are (1) initialize
a module, for example numpy, and (2) define a name, for

Fig. (1). The code implements circular convolution in Python. The function comp circ_conv computes circular convolution and the function draw
seqn and filt plots: (a) input sequence xn = {4, 5, 6, 2}, (b) filter hn = {0.5, 2, 0.5}, and (c) output convolution (Hx)n = {2, 10.5, 15, 15.5, 7, 1}.

Journal of Independent Studies and Research – Computing Volume 14 Issue 1 Jan-June 2016 5

 In above code, the inprod function takes two sequences
g and h as input parameters. A variable N is assigned the
length of sequence g. Another variable tmp is initialized with
a value of zero. A for loop is used to compute inner product
which assigns sum of element-by-element product to tmp
variable. After completion of this for loop, tmp contains the
result. This function exits by return tmp statement.

 To use this function consider an example in which two
input sequences are gn = {0, 1, 2, 3, 4, 5} and hn = {5, 4, 3, 2,
1, 0}. These sequences are initialized as two arrays s1 and s2,
and function inprod is called with s1 and s2 as parameters.
The function inprod returns inner product value which is
assigned to a variable inp. This is accomplished by following
program code. This program code when executed in Python
interpreter displays 20. The print keyword is used to displays
the result. Note, the comments in Python begin with a number
(#) sign.

 s1 = np.array([0,1,2,3,4,5])
 s2 = np.array([5,4,3,2,1,0])
 inp = inprod(s1,s2)
 print inp # result is 20

 The program code to make plots of both input signals
and element-by-element multiplication is as follows. The
result of execution is shown in Figure 2 which has subplots
similar to MATLAB figure with obvious coding similarity.

 plt.figure(1)
 plt.subplot(131)
 plt.plot(s1,’ro--’)
 plt.axis([-0.5, 5.5,-0.5,6.5])
 plt.xlabel(’Sequence, $s1_{n}$.’)
 plt.grid(True)
 plt.subplot(132)
 plt.plot(s2,’bo--’)
 plt.axis([-0.5, 5.5,-0.5,6.5])
 plt.xlabel(’Sequence, $s2_{n}$.’)
 plt.grid(True)
 plt.subplot(133)
 plt.plot(s1*s2,’go--’)
 plt.axis([-0.5, 5.5,-0.5,6.5])
 plt.xlabel(’Sequence, $s1_{n}*s2_{n}$.’)
 plt.grid(True)
 plt.show()

 The heart of DWT computation lies in the convolution
operation between two input signals gn and hn. This leads to
write a program code for (8) which is accomplished by the
function comp_conv defined in Python as follows. The
comments show four steps of convolution operation which
are flip, shift, multiplication, and addition.

def comp_conv(g,h):
 L = len(g)
 M = len(h)
 N = L + M - 1
 gn = np.zeros(N)
 gn[:L] = g[:]
 hn = np.zeros(N)
 hn[:M] = h[:]
 hn = hn[::-1,...] # flip
 hn = np.roll(hn,1) # shift
 cnv = np.zeros(N)
 # sum-of-product
 for k in range(N):
 hk = np.roll(hn,k)
 cnv[k] = sum(gn * hk)
 return cnv

 The above program code is used to compute convolu-
tion for earlier signals s1 and s2. The resulting sequence is {0,
5, 14, 26, 40, 55, 40, 26, 14, 5, 0} which is same as computed
by the numpy.convolve operator. The associated code for this
comparison is as follows.
 np.convolve(s1, s2)

 Haar basis sequences in (12) and (13) are example basis
sequences. These sequences have orthogonal property which
means these signals are at right angle to each other. In other
words, <gn, gn—2k> = <hn, hn—2k> = and <gn, hn—2k> = 0.
The Python program code to generate level-J transformation
matrix is given below.

 J = raw_input(’Input J: ’)
 J = int(J) # Convert to integer
 l = np.array(np.arange(J) + 1)
 # Sequence: g_{n}ˆ{J}
 gnJ = np.array(np.zeros(2 ** J))
 # Sequence: h_{n}ˆ{l}, l = {1,...,J}
 hnl = np.array(np.zeros(J*(2**J)))
 hnl = hnl.reshape(J,(2**J))
 # Compute transformation matrix, T
 for k in np.arange(2 ** J):
 gnJ[k] = 2 ** (-J / 2.0)
 for m in l:
 for k in np.arange(2 ** m):
 if k < (2**(m-1)):
 hnl[m - 1, k]= (2 ** (-m / 2.0))
 elif k < (2**m) :
 hnl[m - 1, k]= -(2 ** (-m / 2.0))
 T = np.concatenate((hnl, [gnJ]),axis=0)

 The above code starts by an input prompt for J-level,
convert input string value to integer value, and initializes
Haar basis sequences and . A for loop computes the
sequence as per (12). A nested for loop computes the

)(J
ng)(l

nh

k

Journal of Independent Studies and Research – Computing Volume 14 Issue 1 Jan-June 20166

=

22
1

22
1

22
1

22
1

22
1

22
1

22
1

22
1

22
1

22
1

22
1

22
1

22
1

22
1

22
1

22
1

0000
2
1

2
1

2
1

2
1

000000
2
1

2
1

T

 In this section, the DFT and IDFT as defined in (4) and
(6) are implemented in Python and applied on following
example input sequences to compute a length-16 DFT.

 In the start of program code development for DFT, there
is a need to import Numpy and Matplotlib.pyplot. This leads
to write two Python import statements below. These instruc-

IV. IMPLEMENTATION OF DFT

(14)= nnyx nn 32
2cos,

16
2cos,

Fig. (2). Plots of sequences (a) s1n = {0, 1, 2, 3, 4, 5}, (b) s2n = {5, 4, 3, 2, 1, 0}, and (c) s1 * s2 which leads to < s1, s2 > = ∑(0, 4, 6, 6, 4, 0) = 20.

sequence as per (13). Both sequences are concatenated as
the transformation matrix T.

 The output transformation matrix for scale entered as
input J = 3 is given below. Note that the rows of this matrix
starting from first row correspond to and re-
spectively. The elements of this matrix are shown as fractions
instead of real numbes.

,,,)3()2()1(
nnn hhh)3(

ng

tions provide functionality available in Numpy Python
module and Pylab Matplotlib interface.
 import numpy as np
 import matplotlib.pyplot as plt

 Once import of required modules is accomplished, the
next step is to define and initialize variables appropriate data
types. This is done by following three statements. In this
code, to compute length-16 DFT, a constant value 16 is
assigned to N. As Python is a case sensitive language similar
to C/C++, therefore N and n are two different data variable
names. The data type array is used and Numpy buil-in
function numpy.arange assigns n = {0, 1, ... , 15}. Note,
np.arange is used instead of numpy.arange due local name np
is assigned to numpy in earlier import statement. Last
statement in this code initializes x and y with sequences in
(14). This statement combines two statements in one instruc-
tion. Python integer division is different than float division, to
use float division 16.0 is typed instead of 16 and similarly
32.0 is used instead of 32.

 N = 16 # Data type: integer
 # Data type: numpy.ndarray
 # n = [0,1,...,15]
 n = np.arange(N)
 x, y = np.cos(2 *np.pi*n/16.0), np.sin(2*np.pi*n/32.0)

)(l
nh

Journal of Independent Studies and Research – Computing Volume 14 Issue 1 Jan-June 2016 7

Fig. (3). Plots of (a) sequences xn and yn in (14) and (b) length-16 DFT magnitudes |Xk| and |Yk|.

Fig. (4). Plots of (a) sequence xn in (15), (b) length-32 DFT magnitude |X(ejw)| using Numpy built-in function numpy.fft.fft to compute DFT, (c)
sequence, x'n = IDFT(Xk) using developed program code in Section IV, and (d) the difference sequence, xdn = x'n – xn.

X.real ** 2 computes (Re)2. Finally, np.sqrt calculates square
root. Now, to verify the program code developed in this
section generates similar results as Numpy built-in FFT
function, use following statement.

 X = np.fft.fft(x,N)

 The program code developed for DFT in Section IV can
be modified to compute IDFT. These changes are: compute
zzzz, instead of WN, and divide it by N, recall float division.

 This code is given below.
 WN = np.exp(2.0j * np.pi / float(N))
 ...
 x[n] = sum(F[n,:] * X[:]) / float(N)
 y[n] = sum(F[n,:] * Y[:]) / float(N)
 ...
 In above code, index variable n is used instead of k. The
built-in function in Numpy for IDFT is numpy.fft.ifft.
To demonstrate application of program code developed for
IDFT, consider input sequence xn below for n = {0, … , 31}.
Length-32 DFT i.e. Xk is computed for k = {0, … , 31} using
numpy.fft.fft function, See Figure 4.

Journal of Independent Studies and Research – Computing Volume 14 Issue 1 Jan-June 20168

Fig. (5). Plots of sequences and orthogonal DWT: (a) x1 = {1, -4, 3, 0}, (b) x2 = {0, 1, 2, 3, 4, 5, 6, 7}, (c) x3 = {0, 1, 2, 3, 4, 5, 6, 7, 7, 6, 5, 4,
3, 2, 1, 0} and (d)-(f) results of comp_conv2(sequence,level). The orthogonal DWT coefficients are organized as { }.)()()1(,,, J

k
J

kk

 The next part of DFT program code initializes arrays for
intermediate operations and to hold final results. The F matrix
is an NxN array which corresponds to (4), X and Y are for
DFT of x and y, and Xmod and Ymod are for magnitudes |X|
and |Y|, respectively.

 F = np.zeros((N,N),dtype=np.complex)
 X = np.zeros(N,dtype=np.complex)
 Y = np.zeros(N,dtype=np.complex)
 Xmod = np.zeros(N,dtype=np.float)
 Ymod = np.zeros(N,dtype=np.float)

 The rest of program code to implement DFT is given
below. In this code, the value of unit-modulus Eigen
sequence, i.e., is computed first which is
required to compute (4). A nested for loop is used in the
program code. The inner for loop is used to compute elements
of each row of F matrix and outer for loop is used to compute
DFT coefficients. After execution of both for loops, X and Y
arrays hold DFT results. Each element of both arrays is a
complex number. The relation is used to
compute Fourier spectrum of X i.e. magnitude of X or |X|.
The same is repeated to compute |Y|. Figure 3 shows subplots
related to this example input sequence (14).

 WN = np.exp(-2.0j * np.pi / float(N))
 for k in range(N):

knNjkn
N eW)/2(=

22 (Im)(Re)|| +=X

 for m in range(N): # m = n
 pwr = k * m
 F[k,m] = WN ** pwr
 X[k] = sum(F[k,:] * x[:])
 Y[k] = sum(F[k,:] * y[:])
 Xmod = np.sqrt(X.real ** 2 + X.imag ** 2)
 Ymod = np.sqrt(Y.real ** 2 + Y.imag ** 2)

 In above part of program code for DFT in Python, use of
float(N) in computing value of WN shows a type conversion
from integer type to float type. This is required so that Python
interpreter uses float division instead of integer division. To
understand this, try execution of following code in Python
interpreter. The integer division i.e. 1/2 results in 0 whereas
the float division, i.e., 1/float(2) results in 0.5. This is an
important point while coding fractions or working with real
numbers in Python.

 >>> 1/2
 0
 >>> 1/float(2)
 0.5

 Array slicing is used to multiply a row of F and x inside
the function sum. This means multiplication expression F[k,:]
* x[:] effectively generates element-by-element product of kth
row of F matrix and input sequence x. Note that power or
exponent operator in Python is ** which means expression

 temp1 = np.array(np.zeros(2**lvl))
 temp2 = np.array(np.zeros(2**lvl))

 T[lvl,:] = W[d-1] * T[lvl,:]
 T[lvl-1,:] = W[d-2] * T[lvl-1,:]
 tmp, idx = 0, 0
 for k in range(n-2):

 temp1[:], temp2[:] = 0, 0
 for m in range((d/(2**(k+1)))):
 temp1 = np.roll(T[k,:], (2*m)*(2**k))
 temp1 = temp1 * W[idx]
 temp2 += temp1
 idx = idx + 1
 T[k,:] = temp2
 conv3 = sum(T[:,])
 return conv3

 The above code is used to compute orthogonal IDWT of
signals x1, x2, and x3 transformed to Wavelet-domain by
using Python function comp_conv2 for levels J = 2, J = 3, and
J = 4, respectively; and are given below. The transformed
pair is , where W denotes the Wavelet-domain
representation.

 The above program code is used to compute orthogonal
DWT of following sequences x1, x2, and x3 for levels J = 2,
J = 3, and J = 4, respectively.

 x1 = {1, 4, -3, 0}
 x2 = {0, 1, 2, 3, 4, 5, 6, 7}
 x3 = {0, 1, 2, 3, 4, 5, 6, 7, 7, 6, 5, 4, 3, 2, 1, 0}

 The resulting DWT coefficients, organized as
zzzzzzzzzzzzzzz , are given below. These results are same as
computed with Python module PyWavelets. Figure 5 shows
plots of sequences and orthogonal DWT. The elements of
resulting array are shown up to three decimal places.

 comp_conv2(xn3,4)
 # [-0.707 -0.707 -0.707 -0.707
 # 0.707 0.707 0.707 0.707
 # -2. -2. 2. 2.
 # -5.656 5.656 0. 14.]
 comp_conv2(xn2,3)
 # [-0.707 -0.707 -0.707 -0.707
 # -2. -2. -5.656 9.899]
 comp_conv2(xn1,2)
 # [-2.121 -2.121 4. 1.]

 The developed program code for orthogonal IDWT
implementation is given below. The function comp conv3
performs a reverse operation as of earlier function comp
conv2. Note, a backslash ‘\’ is used for a multi-line Python
statement.
 def comp_conv3(win,lvl):
 W = win
 T = comp_trans(lvl)
 n = T.shape[0]
 d = T.shape[1]
 conv3 = np.array(np.zeros(2**lvl))

X.real ** 2 computes (Re)2. Finally, np.sqrt calculates square
root. Now, to verify the program code developed in this
section generates similar results as Numpy built-in FFT
function, use following statement.

 X = np.fft.fft(x,N)

 The program code developed for DFT in Section IV can
be modified to compute IDFT. These changes are: compute
zzzz, instead of WN, and divide it by N, recall float division.

 This code is given below.
 WN = np.exp(2.0j * np.pi / float(N))
 ...
 x[n] = sum(F[n,:] * X[:]) / float(N)
 y[n] = sum(F[n,:] * Y[:]) / float(N)
 ...
 In above code, index variable n is used instead of k. The
built-in function in Numpy for IDFT is numpy.fft.ifft.
To demonstrate application of program code developed for
IDFT, consider input sequence xn below for n = {0, … , 31}.
Length-32 DFT i.e. Xk is computed for k = {0, … , 31} using
numpy.fft.fft function, See Figure 4.

Journal of Independent Studies and Research – Computing Volume 14 Issue 1 Jan-June 2016 9

 for m in range(N): # m = n
 pwr = k * m
 F[k,m] = WN ** pwr
 X[k] = sum(F[k,:] * x[:])
 Y[k] = sum(F[k,:] * y[:])
 Xmod = np.sqrt(X.real ** 2 + X.imag ** 2)
 Ymod = np.sqrt(Y.real ** 2 + Y.imag ** 2)

 In above part of program code for DFT in Python, use of
float(N) in computing value of WN shows a type conversion
from integer type to float type. This is required so that Python
interpreter uses float division instead of integer division. To
understand this, try execution of following code in Python
interpreter. The integer division i.e. 1/2 results in 0 whereas
the float division, i.e., 1/float(2) results in 0.5. This is an
important point while coding fractions or working with real
numbers in Python.

 >>> 1/2
 0
 >>> 1/float(2)
 0.5

 Array slicing is used to multiply a row of F and x inside
the function sum. This means multiplication expression F[k,:]
* x[:] effectively generates element-by-element product of kth
row of F matrix and input sequence x. Note that power or
exponent operator in Python is ** which means expression

1
NW

+= nnxn 3
2cos

2
1

10
2cos (15)

 The length-32 IDFT is computed using program code
developed in this section and result is plotted in Figure 4
along with input example sequence in (15). There are four
subplots in this figure. The subplot (a) shows input sequence
for length-32, (b) shows length-32 DFT of input sequence
using Numpy built-in function numpy.fft.fft, the program
code developed in Section IV for DFT can also be used to
generate same output, (c) shows length-32 IDFT to generate
time-domain sequence, x'n, and (d) shows difference
sequence, xdn of sequences xn and x'n. A very small or negligi-
ble difference which is in the order of 10—14 indicates that
developed program code for IDFT in this section produces
similar results.

 In this section, orthogonal DWT and IDWT, as defined
in (9), (10), and (11) are implemented in Python. The devel-
oped program code uses the Haar basis sequences in (12) and
(13); and is implemented as the transformation matrix
explained earlier. The program code is given below as
function definition comp_conv2. It is a variant of earlier
developed comp_con function.
 def comp_conv2(xin,lvl):
 T = comp_trans(lvl)
 n = T.shape[0]

V. IMPLEMENTATION OF DWT

 d = T.shape[1]
 conv2 = np.array(np.zeros(2 ** lvl))
 tmp, idx = 0, 0
 # coefficients: 1 to level-(J-1)
 for k in range(n-2):
 for m in range((d / (2**(k+1)))):
 row = np.roll(T[k,:],(2*m)*(2**k))
 tmp = sum(row * xin)
 conv2[idx] = tmp
 idx = idx + 1
compute level-J wavelet and approximation coefficients
 betaJ = sum(T[lvl-1,:] * xin)
 alphaJ = sum(T[lvl,:] * xin)
 # complete transformation
 conv2[d-2],conv2[d-1] = betaJ,alphaJ
 return conv2

},,,{)()()1(J
k

J
kk ...

 temp1 = np.array(np.zeros(2**lvl))
 temp2 = np.array(np.zeros(2**lvl))

 T[lvl,:] = W[d-1] * T[lvl,:]
 T[lvl-1,:] = W[d-2] * T[lvl-1,:]
 tmp, idx = 0, 0
 for k in range(n-2):

 temp1[:], temp2[:] = 0, 0
 for m in range((d/(2**(k+1)))):
 temp1 = np.roll(T[k,:], (2*m)*(2**k))
 temp1 = temp1 * W[idx]
 temp2 += temp1
 idx = idx + 1
 T[k,:] = temp2
 conv3 = sum(T[:,])
 return conv3

 The above code is used to compute orthogonal IDWT of
signals x1, x2, and x3 transformed to Wavelet-domain by
using Python function comp_conv2 for levels J = 2, J = 3, and
J = 4, respectively; and are given below. The transformed
pair is , where W denotes the Wavelet-domain
representation.

 The developed program code for orthogonal IDWT
implementation is given below. The function comp conv3
performs a reverse operation as of earlier function comp
conv2. Note, a backslash ‘\’ is used for a multi-line Python
statement.
 def comp_conv3(win,lvl):
 W = win
 T = comp_trans(lvl)
 n = T.shape[0]
 d = T.shape[1]
 conv3 = np.array(np.zeros(2**lvl))

Journal of Independent Studies and Research – Computing Volume 14 Issue 1 Jan-June 201610

)(J
Wn xx

}14,0,
2

8,
2
8,2,2,2,2,, ...

2
1,, ...

2
1{3

}
2

14,
2
8,2,2,

2
1,

2
1,

2
1,

2
1{2

}1,4,
2
3,

2
3{1

)4(

)3(

)2(

=

=

=

W

W

W

x

x

x

 To use function comp_conv3 to compute IDWT in
program code, define Numpy arrays for , , and as
follows for above Wavelet-domain representation. The
statement xn = comp_conv3(, J) computes the correspond-
ing orthogonal IDWT. The results are shown as comments.
 xn1w2 = np.array([-3/trt,-3/trt,4,1])
 xn2w3 = np.array([-1/trt,-1/trt, \
 -1/trt,-1/trt,-2,-2,-8/trt,14/trt])
 xn3w4 = np.array([-1/trt,-1/trt, \
 -1/trt,-1/trt,1/trt,1/trt,1/trt, \
 1/trt,-2,-2,2,2,-8/trt,8/trt,0,14])
 xn1 = comp_conv3(xn1w2,2) # [1. 4. -3. 0.]
 xn2 = comp_conv3(xn2w3,3)
 # [4.44e-16 1. 2. 3. 4. 5. 6. 7.]
 xn3 = comp_conv3(xn3w4,4)
 # [0. 1. 2. 3. 4. 5. 6. 7. 7. 6. 5. 4. 3. 2. 1. 0.]

 In above code, the comment for comp_conv3(xn2w3,3)
shows zero as 4.44 x 10—16 – a value very near to zero. All
other results show successful computation of orthogonal

)2(1Wx)3(2Wx)4(3Wx

)(J
Wx

IDWT. Use of PyWavelets results in same values, when
applied to xn1w2, xn2w3, and xn3w4. Use following code to
compute IDWT by PyWavelets for , i.e., xn2w3.
 import pywt # import PyWavelets
 xn2w3_cA3 = np.array([xn2w3[7]])
 xn2w3_cD3 = np.array([xn2w3[6]])
 xn2w3_cD2 = xn2w3[4:6]
 xn2w3_cD1 = xn2w3[0:4]
 xn2w3_wt = [xn2w3_cA3, xn2w3_cD3, \
 xn2w3_cD2, xn2w3_cD1]
 xn2 = pywt.waverec(xn2w3_wt,’haar’)
 # [4.44e-16 1. 2. 3. 4. 5. 6. 7.]

 This study aimed to develop a deeper understanding of
both DFT and orthogonal DWT by the development of
computer program code to implement respective mathemati-
cal formulations in Python language. We have followed a
step-by-step approach to achieve our research objectives.
These objectives include an organized presentation of related
mathematical expressions from sources [7] and [8], an
introduction of Python computer programming language
basics which are directly helpful in the development of the
program code, and application on selected example signals
for results validation. Also, the results are compared with
built-in functions to show the correctness of our implementa-
tion.

 Almost all famous computer programming languages
and mathematical software packages have implemented both
DFT and DWT as built-in functions. However, most of these
implementations use pre-compiled code to achieve faster
execution. This act posed serious limitations towards an
in-depth learning of many useful mathematical formulations.
The learners in STEM disciplines often encountered mathe-
matical formulations, for example complex transformations,
which are important for them to master. The work in this
paper has focused on helping learners to master such mathe-
matical formulations with the help of developing code in a
computer programming language. Python is rapidly evolving
language used by many valuable organizations which are
especially active in carrying out scientific research.

 We encourage learners to use the program code devel-
oped in this study, enhance and modify it as per their needs.
As pointed out earlier, this is not the case for the most of
computer programming languages and mathematical
software packages. They either provide pre-compiled code
which cannot be modified or a cumbersome process to alter
the code up to a certain level. Further, the program code
developed in this study is based on a solid mathematical
framework from [7-8]. A number of examples from these

VI. DISCUSSION

x2W
(3)

valuable resources are used to show application of the devel-
oped program code.

 An interesting finding of this research study is that we
need not to code the complete transformation in a computer
programming language. This means while developing a
program code, we can focus on either forward transformation
or reverse transformation. Once, a forward or reverse trans-
formation is implemented in Python; it can be evaluated on
signals and compared with built-in functions. For example, if
a forward transformation is developed; the built-in reverse
transformation can be used. This is a great flexibility as one
may want to work on implementation of forward transforma-
tion only.

 The implementation described in this research study is
primarily based on fundamental mathematical formulations
of DFT and orthogonal DWT. Advanced and recent fast
computation algorithms are not considered for implementa-
tion. A time comparison is also not considered due scripting
nature of Python computer programming language.

 A successful implementation to compute both DFT and
orthogonal DWT in Python computer programming language
has been presented in this study with application to selected
example time-domain sequences. A step-by-step approach in
the development of program codes has been followed for
successful implementation of circular convolution, DFT,
IDFT, DWT, and IDWT. A clear explanation of program
code has been made to motivate and attract novice readers to
learn fundamental and advanced signal processing tools. The
research has been aimed to strengthen understanding of trans-
formation computation steps involved in computing and
plotting DFT and DWT. The results have shown a very close
agreement with those obtained using built-in functions in
Numpy and PyWavelets modules. The future research direc-
tions include implementation of biorthogonal Wavelet Trans-
form in Python and extend program code developed in this
study to compute higher dimension DFT and DWT.

VII. CONCLUSION

ACKNOWLEDGEMENT

REFERENCES

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

S. Cass. (2016). The 2016 Top Ten Programming
Languages [Online]. Available: http://spec-
trum.ieee.org/computing/software/the-2016-top-pro-
gramming-languages.
P. Guo. (2014). Python is Now the Most Popular Intro-
ductory Teaching Language at Top US Universities
[Online]. Available:
http://cacm.acm.org/blogs/blog-cacm/176450-py-
thon-is-now-the-most-popular-introductory-teaching-la
nguage-at-top-u-s-universities/fulltext.
J. F. Kurose and K. W. Ross, Computer Networking: A
Top-Down Approach. New Jersey: Addison-Wesley,
2016.
E. Muller, J. A. Bednar, M. Diesmann, M.-O. Gewaltig,
M. Hines, and A. P. Davison, “Python in Neuroscience,”
Frontiers in Neuroinformatics, vol. 9, pp: 1-4, 2015.
http://dx.doi.org/10.3389/fninf.2015.00011.
S. Walt, S. C. Colbert, and G. Varoquaux, “The NumPy
Array: A Structure for Efficient Numerical Computa-
tion,” Computing in Science & Engineering, vol. 13, no.
2, pp: 22-30, 2011.
http://dx.doi.org/10.1109/MCSE.2011.37.
PyWavelets–Discrete Wavelet Transform in Python
[Online]. Available: https://pywavelets.readthe-
docs.io/en/latest.
M. Vetterli, J. Kovacevic, and V. Goyal, Foundations of
Signal Processing. United Kingdom: Cambridge
University Press, 2014.
J. Kovacevic, V. Goyal, and M. Vetterli, Fourier and
Wavelet Signal Processing. United Kingdom:
Cambridge University Press, 2015.
M. A. Wood, Python and Matplotlib Essentials for
Scientists and Engineers. United Kingdom: Morgan &
Claypool Publishers, 2015.

 First authors would like to thank the Coursera MOOC
education platform (http://www.coursera.org) and Dr.

Charles Severance, Clinical Associate Professor, School of
Information, University of Michigan, for the online course
titled, “Programming for Everybody (Python),” offered in
2014. An appreciation for reviewers as their remarks helped
to improve the quality of work presented in this paper.

Journal of Independent Studies and Research – Computing Volume 14 Issue 1 Jan-June 2016 11

© Author(s) 2016. CC Attribution 4.0 License. (http://creativecommons.org/licenses/by-nc/4.0/)

This article is licensed under the terms of the Creative Commons Attribution Non-Commercial License which permits unrestricted, non-commercial use, distribu-
tion and reproduction in any medium, provided the work is properly cited.

