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 Abstract—This paper presents implementation of 
Discrete Fourier Transform and Orthogonal Discrete 
Wavelet Transform in Python computer programming 
language. The Fourier Transform is a fundamental signal 
processing tool whereas the Wavelet Transform is a 
powerful and advanced signal processing tool. Both have 
applications in numerous scientific and engineering disci-
plines. Our implementation aims to develop a deeper 
understanding of these transformations by presenting 
detailed coding steps to generate the frequency-domain 
and wavelet-domain outputs for selected example 
time-domain input signals. The results generated from 
developed program code are compared using built-in 
functions with similar matches have shown the successful 
implementation.

 Python has emerged recently as a computer program-
ming language of choice for science and engineering 
disciplines. Despite presence of famous powerful computer 
languages, for example C/C++/C# and Java, and mathemati-
cal tools, for example MATLAB and MAPLE, this computer 
programming language is making its way towards new 
heights [1-2]. The language is open source with an easily 
understandable syntax and is supported by a large community 
of programmers all around the world. Recently, many courses 
have replaced their adoption of computer language by 
Python, for example [3] replaced Java with Python as the 
Python code is easier for the novice learner. The major 
strengths of this programming language are modularity and 
ability to integrate with different computer programming 
languages [4]. 

 Discrete Fourier Transform (DFT) is a fundamental 
signal processing tool. On the other hand, Discrete Wavelet 
Transform (DWT) is a powerful and advanced signal process-
ing tool. Both tools have a wide range of applications in many 

scientific and engineering disciplines. These are implemented 
in almost all computer programming languages and mathe-
matical software tools. Therefore, learning to use application 
of DFT and DWT on time-domain input signals to generate 
corresponding frequency-domain and wavelet-domain 
representations is an established exercise for students in 
science, technology, engineering, and mathematics (STEM) 
programs. Use of computer programs and mathematical 
software tools is a common practice to perform lengthy calcu-
lations.

 The purpose of this study is to explore how to learn 
fundamental and advanced mathematical formulations, for 
example DFT and orthogonal DWT, by using a prospective 
computer programming language. The work in this paper 
aims to strengthen the understanding of DFT by implement-
ing circular convolution and Fourier transformation and also 
to strengthen the understanding of DWT by implementing 
orthogonal Wavelet transformation in Python. A step-by-step 
approach is presented which is useful for readers even if they 
are unfamiliar with this computer programming language. In 
addition, examples are presented to use Numpy [5] built-in 
Fast Fourier Transform (FFT) function to compute the DFT 
and PyWavelets [6] built-in function to compute the DWT. 
The resulting spectrum and scalogram from selected example 
time-domain signals by using the developed Python program 
code are compared with outputs using built-in functions. 
Similar matches show a successful implementation of both 
DFT and DWT.

 In this section, a review of related mathematical expres-
sions with corresponding matrix views is presented from 
[7-8]. This section and most of the examples used in this study 
are selected from this very useful reference.
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II. CONCEPTS AND MATHEMATICAL EXPRESSIONS

 The circular convolution is closely related to DFT and 
A. Discrete Fourier Transform



where H is called the circular convolution operator associated 
with hn. The result (Hx)n is also a length-N sequence. The 
related matrix view is given below.

for any two length-N sequences xn = {x0, x1, … , xN—1} and 
hn = {h0, h1, … , hN—1}, it is defined as

where H is a circulant matrix with hn as its first column. The 
DFT of a length-N sequence xn is defined as

 The inner product is sum of element-by-element multi-
plication of two vectors. This means result of inner product is 
a scalar quantity. A sequence represents a signal or vector. 
The inner product of two given sequences, gn = {g0, g1, … , 
gN—1} and hn = {h0, h1, … , hN—1} is given by

B. Discrete Wavelet Transform
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 The IDFT of a length-N sequence is defined as 
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 The convolution of two sequences gn and hn is given by

 The J-level orthogonal DWT of a sequence xn and  
IDWT are given by

where g(J) and h(l) are called scaling sequence and wavelets, 
respectively. The     is called coarse projection or scaling 
coefficients whereas     are called finer detail projections or 
wavelet coefficients. For 3-level, i.e., J = 3, both scaling and 
wavelet coefficients using (9) and (10) are given by
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     The complete set of basis sequences for 3-level is given by

 For 3-level, Haar basis sequences using (12) and (13) 
are given by

     The Haar basic sequences at J-level are given by

where     is Kronecker delta sequence and is given by
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where Xk is called the spectrum of sequence xn and
                          is a unit-modulus Eigen sequence. “… the DFT 
arises from identifying the unit-modulus Eigen sequences of 
the circular convolution operator …” [7]. The related matrix 
view is given below.
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 In following sections, above equations are implemented 
in the Python computer programming language.

 The Numpy module provides N-dimensional array data 
type, called ND array. The Python program code developed to 
implement the circular convolution is shown in Figure 1. It 
starts with comment lines which begin with number sign (#). 
The two code lines starting with import keyword find and 
initialize Python modules Numpy and Matplotlib.pylab and 
assign local names np and plt respectively. The Matplotlib [9] 
is a library for creating 2D plots in Python with pylab 
interface i.e., Matplotlib.pylab which provides functions 
similar to MATLAB.
 
 The function comp_circ_conv computes circular convo-
lution and plots input sequence xn, filter hn, and resulting 
circular convolution (Hx)n by calling the function draw_se-
qn_and_filt. In function comp_circ_conv, Python built-in 
function len is used to find length L and M of filter hn and 
input sequence xn respectively. This step is required to deter-
mine the value N which is used for zero-padding both input 
tsequences.

 The variables filtN, seqnN, and Hx are defined as 
N-point numpy.ndarray sequences. These sequences are 
initialized with all elements set equal to zero. Both filtN and 
seqnN are assigned filt and seqn sequences up to length of filt, 
L, and length of seqn, M, respectively. This is accomplished 
using statement filtN[:L] = filt[:] which assigns first L mem-
bers of filtN array to members of filt array. In this way, 
elements of filtN array are members of filt array from 0 to 
L-1, and remaining members are zeros from L to N-1. This is 
repeated for seqnN which after assignment has members of 
seqn from 0 to M-1, and zeros from M to N-1. Note, the 
indexing in Python follows C/C++ which starts from 0, 
instead of 1 as in MATLAB. This means members of an 
N-point array are accessed using index from 0 to N-1.

  In first example, the function comp_circ_conv input 
arrays are xn = {4, 5, 6, 2} and hn = {0.5, 2, 0.5} which are 
assigned to arrays seqn and filt, respectively. These arrays are 

III. PRELIMINARY IMPLEMENTATION

assigned to new arrays seqnN = {4, 5, 6, 2, 0, 0} and filtN = 
{0.5, 2, 0.5, 0, 0, 0}, refer Figure 1 for plots of zero-padded 
input sequences. The filtN array is flipped and rolled by using 
statements filtNflip = filtN[::-1,...] and filtNflip = np.roll(filt-
Nflip,1) respectively. The output array filtNflip after execu-
tion of these two statements is equal to {0.5, 0, 0, 0.5, 2}. At 
this point, first row of (2), i.e., {h0, h5, … , h1} for N = 6 is 
available as filtNflip.

 A for-loop implements circular convolution in (1) and 
(2). The loop index is variable k which takes values in 
range(N) i.e., from 0 to N-1. Note, the colon operator (:) in the 
for-loop statement tells Python a code block follows. Indenta-
tion is very important and used exclusively in this computer 
language for identification and execution of code blocks. The 
concept is similar to use of braces f g in C/C++. After comple-
tion of for- loop, Hx holds result of circular convolution.

 At this point, the function draw_seqn_and_filt is called 
with three parameters: input sequence xn, filter hn and circular 
convolution Hx. The definition of this function is shown in 
Python code in Figure 1. This code is similar to MATLAB 
figure generating code. It generates three subplots: (a) input 
sequence xn, (b) filter hn and (c) circular convolution Hx. 
These subplots are shown in Figure 1.

 To use the developed program code in Figure 1, add 
following three code lines at the end of program. Once 
program code executes it generates subplots and assigns 
result of circular convolution to H1 due return Hx statement 
in the function comp_circ_conv.

 x = np.array([4,5,6,2])
 h = np.array([0.5,2,0.5])
 H1 = comp_circ_conv(h,x)

 To compute linear convolution which is equivalent to 
circular convolution for N ≥ L +M – 1, Numpy provides a 
function numpy.convolve. This function can be used as 
follows to compute convolution and verify results of earlier 
developed program code. It has verified for example present-
ed in this section that both results are same.

 Now, a thoughtful look at the code in Figure 1 reveals 
that most instructions are assignment statements for variables 
to hold and organize data. The steps to compute the circular 
convolution are followed which include flip and shift one 
sequence and at each shift compute sum of product with other 
sequence. In developing program code, there is a need to 
zero-pad sequences to compute full convolution. A for-loop 
performs sequence shift and compute sum of product to 
generate Hx array.

example np.

 The inner product of two sequences is computed by 
defining inprod function as follows. The def keyword is used 
for function definition. Use of colon at end of a Python 
statement and indentation at start of a statement are very 
important for programming in Python. Indentation is used for 
a block of statements and a colon identifies start of a code 
block.
 def inprod(g,h):
  N = len(g)
  tmp = 0
  for n in range(N):
  tmp += g[n] * h[n]
  return tmp

 To write a program code for inner product in (7) and 
make related plots, there is a need to import Numpy and 
Matplotlib.pyplot. This leads to write two Python import 
statements below.
 import numpy as np
 import matplotlib.pyplot as plt

 Above import statements provide functionality availa-
ble in Numpy module and Pylab Matplotlib interface. The 
Numpy is short for Numeric Python which provides 
N-dimensional array functionality to Python basic installa-
tion. The Pylab interface is a set of functions in Matplotlib 
library which provides functionality similar to MATLAB to 
make 2D plots. An import statement, for example ‘import 
numpy as np’ is executed in two steps which are (1) initialize 
a module, for example numpy, and (2) define a name, for 
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example np.

 The inner product of two sequences is computed by 
defining inprod function as follows. The def keyword is used 
for function definition. Use of colon at end of a Python 
statement and indentation at start of a statement are very 
important for programming in Python. Indentation is used for 
a block of statements and a colon identifies start of a code 
block.
 def inprod(g,h):
  N = len(g)
  tmp = 0
  for n in range(N):
  tmp += g[n] * h[n]
  return tmp

 To write a program code for inner product in (7) and 
make related plots, there is a need to import Numpy and 
Matplotlib.pyplot. This leads to write two Python import 
statements below.
 import numpy as np
 import matplotlib.pyplot as plt

 Above import statements provide functionality availa-
ble in Numpy module and Pylab Matplotlib interface. The 
Numpy is short for Numeric Python which provides 
N-dimensional array functionality to Python basic installa-
tion. The Pylab interface is a set of functions in Matplotlib 
library which provides functionality similar to MATLAB to 
make 2D plots. An import statement, for example ‘import 
numpy as np’ is executed in two steps which are (1) initialize 
a module, for example numpy, and (2) define a name, for 

Fig. (1). The code implements circular convolution in Python. The function comp circ_conv computes circular convolution and the function draw 
seqn and filt plots: (a) input sequence xn = {4, 5, 6, 2}, (b) filter hn = {0.5, 2, 0.5}, and (c) output convolution (Hx)n = {2, 10.5, 15, 15.5, 7, 1}.
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 In above code, the inprod function takes two sequences 
g and h as input parameters. A variable N is assigned the 
length of sequence g. Another variable tmp is initialized with 
a value of zero. A for loop is used to compute inner product 
which assigns sum of element-by-element product to tmp 
variable. After completion of this for loop, tmp contains the 
result. This function exits by return tmp statement.

 To use this function consider an example in which two 
input sequences are gn = {0, 1, 2, 3, 4, 5} and hn = {5, 4, 3, 2, 
1, 0}. These sequences are initialized as two arrays s1 and s2, 
and function inprod is called with s1 and s2 as parameters. 
The function inprod returns inner product value which is 
assigned to a variable inp. This is accomplished by following 
program code. This program code when executed in Python 
interpreter displays 20. The print keyword is used to displays 
the result. Note, the comments in Python begin with a number 
(#) sign.

  s1 = np.array([0,1,2,3,4,5])
  s2 = np.array([5,4,3,2,1,0])
  inp = inprod(s1,s2)
  print inp # result is 20

 The program code to make plots of both input signals 
and element-by-element multiplication is as follows. The 
result of execution is shown in Figure 2 which has subplots 
similar to MATLAB figure with obvious coding similarity.

  plt.figure(1)
  plt.subplot(131)
  plt.plot(s1,’ro--’)
  plt.axis([-0.5, 5.5,-0.5,6.5])
  plt.xlabel(’Sequence, $s1_{n}$.’)
  plt.grid(True)
  plt.subplot(132)
  plt.plot(s2,’bo--’)
  plt.axis([-0.5, 5.5,-0.5,6.5])
  plt.xlabel(’Sequence, $s2_{n}$.’)
  plt.grid(True)
  plt.subplot(133)
  plt.plot(s1*s2,’go--’)
  plt.axis([-0.5, 5.5,-0.5,6.5])
  plt.xlabel(’Sequence, $s1_{n}*s2_{n}$.’)
  plt.grid(True)
  plt.show()

 The heart of DWT computation lies in the convolution 
operation between two input signals gn and hn. This leads to 
write a program code for (8) which is accomplished by the 
function comp_conv defined in Python as follows. The 
comments show four steps of convolution operation which 
are flip, shift, multiplication, and addition.

def comp_conv(g,h):
  L = len(g)
  M = len(h)
   N = L + M - 1
   gn = np.zeros(N)
  gn[:L] = g[:]
  hn = np.zeros(N)
  hn[:M] = h[:]
  hn = hn[::-1,...] # flip
  hn = np.roll(hn,1) # shift
  cnv = np.zeros(N)
  # sum-of-product
  for k in range(N):
       hk = np.roll(hn,k)
       cnv[k] = sum(gn * hk)
  return cnv

 The above program code is used to compute convolu-
tion for earlier signals s1 and s2. The resulting sequence is {0, 
5, 14, 26, 40, 55, 40, 26, 14, 5, 0} which is same as computed 
by the numpy.convolve operator. The associated code for this 
comparison is as follows.
  np.convolve(s1, s2)

 Haar basis sequences in (12) and (13) are example basis 
sequences. These sequences have orthogonal property which 
means these signals are at right angle to each other. In other 
words, <gn, gn—2k> = <hn, hn—2k> =       and <gn, hn—2k> = 0. 
The Python program code to generate level-J transformation 
matrix is given below. 

 J = raw_input(’Input J: ’)
 J = int(J) # Convert to integer
 l = np.array(np.arange(J) + 1)
 # Sequence: g_{n}ˆ{J}
 gnJ = np.array(np.zeros(2 ** J))
 # Sequence: h_{n}ˆ{l}, l = {1,...,J}
 hnl = np.array(np.zeros(J*(2**J)))
 hnl = hnl.reshape(J,(2**J))
 # Compute transformation matrix, T
 for k in np.arange(2 ** J):
  gnJ[k] = 2 ** (-J / 2.0)
       for m in l:
           for k in np.arange(2 ** m):
               if k < (2**(m-1)):
                    hnl[m - 1, k]= (2 ** (-m / 2.0))
         elif k < (2**m) :
                    hnl[m - 1, k]= -(2 ** (-m / 2.0))
 T = np.concatenate((hnl, [gnJ]),axis=0)

 The above code starts by an input prompt for J-level, 
convert input string value to integer value, and initializes 
Haar basis sequences      and     . A for loop computes the 
sequence as per (12). A nested for loop computes the 
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 In this section, the DFT and IDFT as defined in (4) and 
(6) are implemented in Python and applied on following 
example input sequences to compute a length-16 DFT.

 In the start of program code development for DFT, there 
is a need to import Numpy and Matplotlib.pyplot. This leads 
to write two Python import statements below. These instruc-

IV. IMPLEMENTATION OF DFT

(14)= nnyx nn 32
2cos,

16
2cos,

Fig. (2). Plots of sequences (a) s1n = {0, 1, 2, 3, 4, 5}, (b) s2n = {5, 4, 3, 2, 1, 0}, and (c) s1 * s2 which leads to < s1, s2 > = ∑(0, 4, 6, 6, 4, 0) = 20.

sequence      as per (13). Both sequences are concatenated as 
the transformation matrix T.

 The output transformation matrix for scale entered as 
input J = 3 is given below. Note that the rows of this matrix 
starting from first row correspond to                      and        re-
spectively. The elements of this matrix are shown as fractions 
instead of real numbes.

,,, )3()2()1(
nnn hhh )3(

ng

tions provide functionality available in Numpy Python 
module and Pylab Matplotlib interface.
    import numpy as np
    import matplotlib.pyplot as plt

 Once import of required modules is accomplished, the 
next step is to define and initialize variables appropriate data 
types. This is done by following three statements. In this 
code, to compute length-16 DFT, a constant value 16 is 
assigned to N. As Python is a case sensitive language similar 
to C/C++, therefore N and n are two different data variable 
names. The data type array is used and Numpy buil-in 
function numpy.arange assigns n = {0, 1, ... , 15}. Note, 
np.arange is used instead of numpy.arange due local name np 
is assigned to numpy in earlier import statement. Last 
statement in this code initializes x and y with sequences in 
(14). This statement combines two statements in one instruc-
tion. Python integer division is different than float division, to 
use float division 16.0 is typed instead of 16 and similarly 
32.0 is used instead of 32. 

 N = 16 # Data type: integer
 # Data type: numpy.ndarray
 # n = [0,1,...,15]
 n = np.arange(N)
 x, y = np.cos(2 *np.pi*n/16.0), np.sin(2*np.pi*n/32.0)

)(l
nh
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Fig. (3). Plots of (a) sequences xn and yn in (14) and (b) length-16 DFT magnitudes |Xk| and |Yk|.

Fig. (4). Plots of (a) sequence xn in (15), (b) length-32 DFT magnitude |X(ejw)| using Numpy built-in function numpy.fft.fft to compute DFT, (c) 
sequence, x'n = IDFT(Xk) using developed program code in Section IV, and (d) the difference sequence, xdn = x'n – xn. 



X.real ** 2 computes (Re)2. Finally, np.sqrt calculates square 
root. Now, to verify the program code developed in this 
section generates similar results as Numpy built-in FFT 
function, use following statement.

 X = np.fft.fft(x,N)

 The program code developed for DFT in Section IV can 
be modified to compute IDFT. These changes are: compute                   
zzzz, instead of WN, and divide it by N, recall float division. 

 This code is given below.
 WN = np.exp(2.0j * np.pi / float(N))
   ...
  x[n] = sum(F[n,:] * X[:]) / float(N)
  y[n] = sum(F[n,:] * Y[:]) / float(N)
  ...
 In above code, index variable n is used instead of k. The 
built-in function in Numpy for IDFT is numpy.fft.ifft.
To demonstrate application of program code developed for 
IDFT, consider input sequence xn below for n = {0, … , 31}. 
Length-32 DFT i.e. Xk is computed for k = {0, … , 31} using 
numpy.fft.fft function, See Figure 4.
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Fig. (5). Plots of sequences and orthogonal DWT: (a) x1 = {1, -4, 3, 0}, (b) x2 = {0, 1, 2, 3, 4, 5, 6, 7}, (c) x3 = {0, 1, 2, 3, 4, 5, 6, 7, 7, 6, 5, 4, 
3, 2, 1, 0} and (d)-(f) results of comp_conv2(sequence,level). The orthogonal DWT coefficients are organized as {                      }.)()()1( ,,, J

k
J

kk

 The next part of DFT program code initializes arrays for 
intermediate operations and to hold final results. The F matrix 
is an NxN array which corresponds to (4), X and Y are for 
DFT of x and y, and Xmod and Ymod are for magnitudes |X| 
and |Y|, respectively.

 F = np.zeros((N,N),dtype=np.complex)
 X = np.zeros(N,dtype=np.complex)
 Y = np.zeros(N,dtype=np.complex)
 Xmod = np.zeros(N,dtype=np.float)
 Ymod = np.zeros(N,dtype=np.float)

 The rest of program code to implement DFT is given 
below. In this code, the value of unit-modulus Eigen 
sequence, i.e.,                           is computed first which is 
required to compute (4). A nested for loop is used in the 
program code. The inner for loop is used to compute elements 
of each row of F matrix and outer for loop is used to compute 
DFT coefficients. After execution of both for loops, X and Y 
arrays hold DFT results. Each element of both arrays is a 
complex number. The relation                           is used to 
compute Fourier spectrum of X i.e. magnitude of X or |X|. 
The same is repeated to compute |Y|. Figure 3 shows subplots 
related to this example input sequence (14).

 WN = np.exp(-2.0j * np.pi / float(N))
 for k in range(N):

knNjkn
N eW )/2(=

22 (Im)(Re)|| +=X

  for m in range(N): # m = n
       pwr = k * m
       F[k,m] = WN ** pwr
  X[k] = sum(F[k,:] * x[:])
  Y[k] = sum(F[k,:] * y[:])
 Xmod = np.sqrt(X.real ** 2 + X.imag ** 2)
 Ymod = np.sqrt(Y.real ** 2 + Y.imag ** 2)

 In above part of program code for DFT in Python, use of 
float(N) in computing value of WN shows a type conversion 
from integer type to float type. This is required so that Python 
interpreter uses float division instead of integer division. To 
understand this, try execution of following code in Python 
interpreter. The integer division i.e. 1/2 results in 0 whereas 
the float division, i.e., 1/float(2) results in 0.5. This is an 
important point while coding fractions or working with real 
numbers in Python.

 >>> 1/2
 0
 >>> 1/float(2)
 0.5

 Array slicing is used to multiply a row of F and x inside 
the function sum. This means multiplication expression F[k,:] 
* x[:] effectively generates element-by-element product of kth 
row of F matrix and input sequence x. Note that power or 
exponent operator in Python is ** which means expression 



  temp1 = np.array(np.zeros(2**lvl))
  temp2 = np.array(np.zeros(2**lvl))

 T[lvl,:] = W[d-1] * T[lvl,:]
  T[lvl-1,:] = W[d-2] * T[lvl-1,:]
  tmp, idx = 0, 0
  for k in range(n-2):
 
 temp1[:], temp2[:] = 0, 0
  for m in range((d/(2**(k+1)))):
      temp1 = np.roll(T[k,:], (2*m)*(2**k))
      temp1 = temp1 * W[idx]
      temp2 += temp1
       idx = idx + 1
  T[k,:] = temp2
 conv3 = sum(T[:,])
 return conv3

 The above code is used to compute orthogonal IDWT of 
signals x1, x2, and x3 transformed to Wavelet-domain by 
using Python function comp_conv2 for levels J = 2, J = 3, and 
J = 4, respectively; and are given below. The transformed 
pair is          , where W denotes the Wavelet-domain 
representation.

 The above program code is used to compute orthogonal 
DWT of following sequences x1, x2, and x3 for levels J = 2, 
J = 3, and J = 4, respectively.

 x1 = {1, 4, -3, 0}
 x2 = {0, 1, 2, 3, 4, 5, 6, 7}
 x3 = {0, 1, 2, 3, 4, 5, 6, 7, 7, 6, 5, 4, 3, 2, 1, 0}

 The resulting DWT coefficients, organized as 
zzzzzzzzzzzzzzz , are given below. These results are same as 
computed with Python module PyWavelets. Figure 5 shows 
plots of sequences and orthogonal DWT. The elements of 
resulting array are shown up to three decimal places.

 comp_conv2(xn3,4)
 # [-0.707 -0.707 -0.707 -0.707
 #    0.707  0.707  0.707  0.707
 #   -2.      -2.        2.        2.
 #  -5.656  5.656  0.       14. ]
 comp_conv2(xn2,3)
 # [-0.707 -0.707 -0.707 -0.707
 #  -2.        -2.      -5.656   9.899]
 comp_conv2(xn1,2)
 # [-2.121 -2.121  4.         1.]

 The developed program code for orthogonal IDWT 
implementation is given below. The function comp conv3 
performs a reverse operation as of earlier function comp 
conv2. Note, a backslash ‘\’ is used for a multi-line Python 
statement.
 def comp_conv3(win,lvl):
  W = win
  T = comp_trans(lvl)
  n = T.shape[0]
  d = T.shape[1]
  conv3 = np.array(np.zeros(2**lvl))

X.real ** 2 computes (Re)2. Finally, np.sqrt calculates square 
root. Now, to verify the program code developed in this 
section generates similar results as Numpy built-in FFT 
function, use following statement.

 X = np.fft.fft(x,N)

 The program code developed for DFT in Section IV can 
be modified to compute IDFT. These changes are: compute                   
zzzz, instead of WN, and divide it by N, recall float division. 

 This code is given below.
 WN = np.exp(2.0j * np.pi / float(N))
   ...
  x[n] = sum(F[n,:] * X[:]) / float(N)
  y[n] = sum(F[n,:] * Y[:]) / float(N)
  ...
 In above code, index variable n is used instead of k. The 
built-in function in Numpy for IDFT is numpy.fft.ifft.
To demonstrate application of program code developed for 
IDFT, consider input sequence xn below for n = {0, … , 31}. 
Length-32 DFT i.e. Xk is computed for k = {0, … , 31} using 
numpy.fft.fft function, See Figure 4.
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  for m in range(N): # m = n
       pwr = k * m
       F[k,m] = WN ** pwr
  X[k] = sum(F[k,:] * x[:])
  Y[k] = sum(F[k,:] * y[:])
 Xmod = np.sqrt(X.real ** 2 + X.imag ** 2)
 Ymod = np.sqrt(Y.real ** 2 + Y.imag ** 2)

 In above part of program code for DFT in Python, use of 
float(N) in computing value of WN shows a type conversion 
from integer type to float type. This is required so that Python 
interpreter uses float division instead of integer division. To 
understand this, try execution of following code in Python 
interpreter. The integer division i.e. 1/2 results in 0 whereas 
the float division, i.e., 1/float(2) results in 0.5. This is an 
important point while coding fractions or working with real 
numbers in Python.

 >>> 1/2
 0
 >>> 1/float(2)
 0.5

 Array slicing is used to multiply a row of F and x inside 
the function sum. This means multiplication expression F[k,:] 
* x[:] effectively generates element-by-element product of kth 
row of F matrix and input sequence x. Note that power or 
exponent operator in Python is ** which means expression 

1
NW

+= nnxn 3
2cos

2
1

10
2cos (15)

 The length-32 IDFT is computed using program code 
developed in this section and result is plotted in Figure 4 
along with input example sequence in (15). There are four 
subplots in this figure. The subplot (a) shows input sequence 
for length-32, (b) shows length-32 DFT of input sequence 
using Numpy built-in function numpy.fft.fft, the program 
code developed in Section IV for DFT can also be used to 
generate same output, (c) shows length-32 IDFT to generate 
time-domain sequence, x'n, and (d) shows difference 
sequence, xdn of sequences xn and x'n. A very small or negligi-
ble difference which is in the order of 10—14 indicates that 
developed program code for IDFT in this section produces 
similar results.

 In this section, orthogonal DWT and IDWT, as defined 
in (9), (10), and (11) are implemented in Python. The devel-
oped program code uses the Haar basis sequences in (12) and 
(13); and is implemented as the transformation matrix 
explained earlier. The program code is given below as 
function definition comp_conv2. It is a variant of earlier 
developed comp_con function.
 def comp_conv2(xin,lvl):
  T = comp_trans(lvl)
  n = T.shape[0]

V. IMPLEMENTATION OF DWT

  d = T.shape[1]
  conv2 = np.array(np.zeros(2 ** lvl))
  tmp, idx = 0, 0
  # coefficients: 1 to level-(J-1)
       for k in range(n-2):
       for m in range((d / (2**(k+1)))):
       row = np.roll(T[k,:],(2*m)*(2**k))
       tmp = sum(row * xin)
       conv2[idx] = tmp
       idx = idx + 1
# compute level-J wavelet and approximation coefficients
 betaJ = sum(T[lvl-1,:] * xin)
 alphaJ = sum(T[lvl,:] * xin)
 # complete transformation
 conv2[d-2],conv2[d-1] = betaJ,alphaJ
 return conv2

},,,{ )()()1( J
k

J
kk ...



  temp1 = np.array(np.zeros(2**lvl))
  temp2 = np.array(np.zeros(2**lvl))

 T[lvl,:] = W[d-1] * T[lvl,:]
  T[lvl-1,:] = W[d-2] * T[lvl-1,:]
  tmp, idx = 0, 0
  for k in range(n-2):
 
 temp1[:], temp2[:] = 0, 0
  for m in range((d/(2**(k+1)))):
      temp1 = np.roll(T[k,:], (2*m)*(2**k))
      temp1 = temp1 * W[idx]
      temp2 += temp1
       idx = idx + 1
  T[k,:] = temp2
 conv3 = sum(T[:,])
 return conv3

 The above code is used to compute orthogonal IDWT of 
signals x1, x2, and x3 transformed to Wavelet-domain by 
using Python function comp_conv2 for levels J = 2, J = 3, and 
J = 4, respectively; and are given below. The transformed 
pair is          , where W denotes the Wavelet-domain 
representation.

 The developed program code for orthogonal IDWT 
implementation is given below. The function comp conv3 
performs a reverse operation as of earlier function comp 
conv2. Note, a backslash ‘\’ is used for a multi-line Python 
statement.
 def comp_conv3(win,lvl):
  W = win
  T = comp_trans(lvl)
  n = T.shape[0]
  d = T.shape[1]
  conv3 = np.array(np.zeros(2**lvl))
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 To use function comp_conv3 to compute IDWT in 
program code, define Numpy arrays for          ,         , and         as 
follows for above Wavelet-domain representation. The 
statement xn = comp_conv3(       , J) computes the correspond-
ing orthogonal IDWT. The results are shown as comments.
 xn1w2 = np.array([-3/trt,-3/trt,4,1])
 xn2w3 = np.array([-1/trt,-1/trt, \
           -1/trt,-1/trt,-2,-2,-8/trt,14/trt])
 xn3w4 = np.array([-1/trt,-1/trt, \
           -1/trt,-1/trt,1/trt,1/trt,1/trt, \
            1/trt,-2,-2,2,2,-8/trt,8/trt,0,14])
 xn1 = comp_conv3(xn1w2,2)        # [ 1. 4. -3. 0. ]
 xn2 = comp_conv3(xn2w3,3)
  # [ 4.44e-16 1. 2. 3. 4. 5. 6. 7. ]
 xn3 = comp_conv3(xn3w4,4)
 # [ 0. 1. 2. 3. 4. 5. 6. 7. 7. 6. 5. 4. 3. 2. 1. 0.]

 In above code, the comment for comp_conv3(xn2w3,3) 
shows zero as 4.44 x 10—16 – a value very near to zero. All 
other results show successful computation of orthogonal 

)2(1Wx )3(2Wx )4(3Wx

)(J
Wx

IDWT. Use of PyWavelets results in same values, when 
applied to xn1w2, xn2w3, and xn3w4. Use following code to 
compute IDWT by PyWavelets for       , i.e., xn2w3.
 import pywt # import PyWavelets
 xn2w3_cA3 = np.array([xn2w3[7]])
 xn2w3_cD3 = np.array([xn2w3[6]])
 xn2w3_cD2 = xn2w3[4:6]
 xn2w3_cD1 = xn2w3[0:4]
 xn2w3_wt = [xn2w3_cA3, xn2w3_cD3, \
               xn2w3_cD2, xn2w3_cD1]
 xn2 = pywt.waverec(xn2w3_wt,’haar’)
 # [ 4.44e-16 1. 2. 3. 4. 5. 6. 7. ]

 This study aimed to develop a deeper understanding of 
both DFT and orthogonal DWT by the development of 
computer program code to implement respective mathemati-
cal formulations in Python language. We have followed a 
step-by-step approach to achieve our research objectives. 
These objectives include an organized presentation of related 
mathematical expressions from sources [7] and [8], an 
introduction of Python computer programming language 
basics which are directly helpful in the development of the 
program code, and application on selected example signals 
for results validation. Also, the results are compared with 
built-in functions to show the correctness of our implementa-
tion.  

 Almost all famous computer programming languages 
and mathematical software packages have implemented both 
DFT and DWT as built-in functions. However, most of these 
implementations use pre-compiled code to achieve faster 
execution. This act posed serious limitations towards an 
in-depth learning of many useful mathematical formulations. 
The learners in STEM disciplines often encountered mathe-
matical formulations, for example complex transformations, 
which are important for them to master. The work in this 
paper has focused on helping learners to master such mathe-
matical formulations with the help of developing code in a 
computer programming language. Python is rapidly evolving 
language used by many valuable organizations which are 
especially active in carrying out scientific research. 

 We encourage learners to use the program code devel-
oped in this study, enhance and modify it as per their needs. 
As pointed out earlier, this is not the case for the most of 
computer programming languages and mathematical 
software packages. They either provide pre-compiled code 
which cannot be modified or a cumbersome process to alter 
the code up to a certain level. Further, the program code 
developed in this study is based on a solid mathematical 
framework from [7-8]. A number of examples from these 

VI. DISCUSSION

x2W
(3)



valuable resources are used to show application of the devel-
oped program code.
 
 An interesting finding of this research study is that we 
need not to code the complete transformation in a computer 
programming language. This means while developing a 
program code, we can focus on either forward transformation 
or reverse transformation. Once, a forward or reverse trans-
formation is implemented in Python; it can be evaluated on 
signals and compared with built-in functions. For example, if 
a forward transformation is developed; the built-in reverse 
transformation can be used. This is a great flexibility as one 
may want to work on implementation of forward transforma-
tion only.  

 The implementation described in this research study is 
primarily based on fundamental mathematical formulations 
of DFT and orthogonal DWT. Advanced and recent fast 
computation algorithms are not considered for implementa-
tion. A time comparison is also not considered due scripting 
nature of Python computer programming language.    

 A successful implementation to compute both DFT and 
orthogonal DWT in Python computer programming language 
has been presented in this study with application to selected 
example time-domain sequences. A step-by-step approach in 
the development of program codes has been followed for 
successful implementation of circular convolution, DFT, 
IDFT, DWT, and IDWT. A clear explanation of program 
code has been made to motivate and attract novice readers to 
learn fundamental and advanced signal processing tools. The 
research has been aimed to strengthen understanding of trans-
formation computation steps involved in computing and 
plotting DFT and DWT. The results have shown a very close 
agreement with those obtained using built-in functions in 
Numpy and PyWavelets modules. The future research direc-
tions include implementation of biorthogonal Wavelet Trans-
form in Python and extend program code developed in this 
study to compute higher dimension DFT and DWT.

VII. CONCLUSION
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