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 Abstract - Graphs are used in many disciplines, from 
communication networks, biological, social networks includ-
ing maths and other fields of science. This is the latest and 
most important field of computer science today. In this 
research, the authors have worked on the materialization 
to improve the query response of graph data.  The large 
graph dataset have been divided into two categories; one 
contains the topological data and other contains the aggre-
gate data and both are accessed via a PAM (Predicate 
Aggregate Materialization) engine which plays an interme-
diary role. PAM engine stores the query results and it checks 
whether the query is new or already processed every time 
the query appears. If it is found already processed than it 
just get the results which are materialized and if it finds a 
new query than it goes for the extraction of data from 
required datasets. After completion of process, PAM engine 
materialize the extracted data for reuse. The technique 
works and it reduces the processing time and improves 
response time.

 Graph processing and optimization is one of the most 
active areas of research today. Graphs are valuable because 
they give brief statistics in a way that is easy for every person 
to understand. Graphs are used all over the world for effective 
data representation purpose. It is computationally challenging 
to manage and analyse graphs to support effective decision 
making graph processing. It is time and resource consuming 
process. There are many algorithms, models and techniques 
which are developed for accessing and processing graphs and 
are still continued developing today. 

 In recent years, the area of graph has got wide attention 
and outstanding growth especially in the social applications 
like facebook, linkedin, twitter, instagram and foursquare. It 
has increased the usage of graphs. These networks are modelled 
as large graphs with vertices representing entities and edges 

as relationship between entities. These applications have got 
much popularity after the web 2.0.  Numerous distributed graph 
processing systems have been proposed such as graph-lab, and 
power-graph. These systems are vertex-centric and follow a 
bulk synchronous parallel model (where vertices send messages 
to each other through their connections or ids). They are tailored 
and efficient for graph processing operators that require iterative 
graph traversal such as page rank, shortest path, bipartite match-
ing and semi-clustering. However, it is costly to support graph 
computation. In fact, it will incur high overhead cost for 
message (carrying the attributes values) passing across the 
graph to find the vertices or edges with the same attribute 
values. 

 In this research, the authors have focused on the graph 
processing and to decrease the graph query response time and 
have determine a significant technique that optimizes the query 
response by materializing the intermediate results of graph 
data.

 In this section, authors have briefly discussed about the 
techniques and technologies used in research for improving 
response time of graph data. 

 Keywords - graph database, materialization, Neo4j, SQL 
Server, attributed data, topological data, PAM Engine. 

 Materialization is used with large databases. It stores or 
cashes the processed query results. Materialization is widely 
used technique mostly with data warehousing or online analyti-
cal processing to extract or select query data from large datasets 
in a minimum time. Materialization stores processed data that 
reused when required. The data warehouse contains huge 
datasets of organizational data and querying these large datasets 
is time consuming task. 

 One solution used in data warehouses to query these large 
datasets in a minimum time and to improve performance is to 
create summaries and indexes on data. Indexes are also useful 
for improving performance but both are combinely used. 
Summaries are the aggregates (sum, max, min and count) of

A. Materialization
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I. INTRODUCTION

II. RELATED CONCEPTS



 Materialization increases the response time but the 
benefit provided by materialization have a cost. As the mate-
rialization stores the processed results, when the primary data 
is changed then the materialized data need to be changed or 
updated. It is more useful in data warehousing or online 
analytical processing databases, where the processed results 
are changed, edited or updated on a scheduled time. As shown 
in Figure 1, every time the user made a query, it gets data 
from already processed aggregated joined and summarized 
database which is faster, reduces the processing and improves 
the performance. User query does not reach at the primary 
database. The worst case is, if the summarized data is not 
updated with primary database a cost of maintenance or upda-
tion is charged every time the primary database gets updated. 
In a data warehouse, a special technical person is employed 
which takes care of any problem and timely updates in both 
databases. More than one summarized or materialized views 
can be crated for achieving better results.

 Considering the Figure 2 which is more suitable for 
online tractional processing (OLTP), but when it comes to 
data warehousing, this technique is not efficient because it 
increases the processing. Having a benefit of no maintenance 
or upgradation and every time the user gets updated data 
directly from the primary database. The main problem in this 
technique is if the dataset is very large than it takes a lot of 
time.

 In Figure 3, the overall conclusion is shown. What would 
happens if when we go for the materialized data and what 
happens if we direct make a query data without using materi-
alization? The Figure 3 shows that there are three tables on 
the left which are not materialized and if user get data, it pays 
the every time for aggregation while using the materialized 
view on the right the user pays the onetime cost and upgrada-
tion cost only if the primary data gets changes. We can 
perform the materialization on a single table by aggregating 
its values, or can perform materialization on multiple tables 
by applying joins or combining both using aggregates and 
joins. Whatever the technique used, it works and it saves time 
which can be understood from the figure given below:

B.  Materialization Cost

Fig. (1). Materialized Structure of Database 

Fig. (2). Non Materialized Structure of Database 

Fig. (3). Materialization and Non Materialization Comparisons

  In this section, the steps and flow of the PAM Engine 
have been discussed in detail with the help of figures and 
charts.
A. PAM Engine Characteristics
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key values. These pre-calculated aggregates are stored in a 
separate database or tables which are summarized data or mate-
rialized view. For example, we can create a summary data 
which contain the sums of salaries and expenses by department 
or years.

III. PREDICATED AGGREGATE 
MATERIALIZATION (PAM) 

 The characteristics of PAM engine is given below 
  • PAM engine is designed using java.
  • PAM engine is capable of getting data from 
   multiple databases.
  • PAM engine reduces the execution time of query.
  • PAM engine can only used for data extraction.
  • PAM engine can be used in windows and web 
   applications.



 Finally, we created two separate instances for Neo4j 
database; one has all the data including attributed and 
topological information and other one only contains the 
topological information as describes in figure 4. Once we got 
the data loaded into a relational database, for first phase we 
store all the attributed and topological data into Neo4j and 
second phase separate the topological data and store it in 
graph oriented database. We extracted topological data and 
load it into Neo4j using csv files, so that we upload this data 
into graph database using cypher query [1].

 The PAM engine will be beneficial in many environ-
ments where the repeated queries are performed regularly 
such as online News websites/ search engines e,g. Consider-
ing the News scenario, thousands of peoples search for the 
same entities or objects, if data is fetched from databases 
every time, it will be more time consuming but if we use the 
PAM engine, then it will be more beneficial and queries can 
be responded much faster. Further, it may be considered that 
the entities and objects are stored in different databases as 
entities in graph database while the objects in relational 
database. PAM engine also combines the results accessed 
from both databases.

B. PAM Benefits

 The DBLP data set is available in raw xml format publi-
cally. The DBLP schema contains the basic columns entities 
like author id publication id and publication type. The basic 
relationship is between publication id, author id and 
published by. The indexes are built on two columns publica-
tion key and author key. The Preprocessing details about the 
DBLP are given below. 

C. DBLP Schema 

 Dividing a large problem into small sub problems 
become easier to solve. The same approach we have used here 
in order to process large dataset of DBLP. To process a large 
graph dataset requires lots of time, storage and processing 
power, but to divide the large datasets into small datasets may 
not minimize the storage requirements but definitely have 
improved the processing time and have required less process-
ing power.

E. Divide and Conquer

D. Conversion from XML to Graph Database
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Fig. (4). Conversion from XML to Relational and Graph Databases

 The DBLP data set is available in raw xml format publi-
cally. The whole process of converting the DBLP data into 
graph data and relational data is given below as;
 
 In order to obtain appropriate format of data, we first 
pre-processed the data. We produced two different formats of 
data; one for column oriented database which contained 
attributed information and other for graph oriented database 
which contained topological information between nodes.

 DBLP is available as a raw xml format, so we used 
BaseX xml database to load xml database into our xml data. 
After loading xml database, we extracted the required infor-
mation by using xquires then we loaded data into relational 
database. We generated the csv files from an xml database 
and uploaded the data from those csv files into relational 
database. It is easy to transform data into any form from 
relational model.

 For instance, we required topological data as well as 
attributed data to store in two separate databases. Therefore, 
we have to pre-process data to achieve such a form of the 
data. In this regard, we first loaded data into a relational 
database (Microsoft SQL Server). We loaded data into three 
tables named DBLPaut, DBLPpub and DBLPnet. The 
DBLPaut table contains id (auto generated incremental) and 
name of author, DBLPpub table contains id (which is the id of 

specific publication in DBLP dataset), name of publication, 
year of publication and type of publication. Finally the table 
DBLPnet contains the relational information between 
DBLPaut and DBLPpub.



F. Intermediate Results Materialization

Fig. (5). Non Database Division

Fig. (6). Predicate Aggregate Materialization Engine 
Working Diagram

 If the query is new than it process query and after 
processing it stores the query and results, otherwise if the 
same query appears again, it will not go for the further 
processing, it only gets the results from child table reference 
to header table Ids, which are already stored or materialized in 
header table in database. If query does not contain the where 
clause than it will directly go on the next step of the PAM 
engine which gets the data from the Neo4j using cypher query 
as shown in Figure 7.  

 The Next step of PAM engine is to get the topological 
data from Neo4j using cypher query. The Neo4j database 
contain only topological data which means no Ids, so the Ids 
are passed as extracted in first step based on where clause 
data (means the attributed data), depends on if where clause 
exists in query. After the successful cypher query execution, 
the results are stored in a CSV file as there may be millions or 
billions of records based on query so all the data can’t be 
cashed so a CSV file will contains all the extracted data from 
Neo4j. After that, the same process is repeated here of materi-
alization. It stores the query in header table and results in a 
child table with header reference. In this step, the results are 
in CSV file. So it is imported to SQL Server by using bulk 
insertion method in a separate table and each time a query 
appears, it checks in the materialized header table, if data 
exist it escape the query execution and directly retrieves the 
results from child table by using the header query reference. 
If query does not exist than it will be processed as given 
above and it will go for the next step. The complete flow chart 

 Figure 5 shows that we have processed and divided a 
large dataset of graph into two categories. We have divided 
the graph data by preprocessing the aggregate values and 
separate the topological values. The large DBLP datasets is 
processed and first part is separated which contain the 
topological information such as (Ids, counts). We can say it 
contains the aggregated data or summarized data which has 
benefited us in further processing when have queried this 
data. The second part which contains the attributed data such 
as (Ids, Names) is separated and converted to SQL server. 

 We have materialized the intermediate results of query 
and reuse it when the same query appears again. This has 
reduced the processing and improves the query response time. 
As a sample, we have used a DBLP dataset as read-only 
dataset of graph. DBLP is a standard dataset contains the 
information of publications and authors we have converted it 
into graph data in Neo4j and divide it into two parts as 
discussed above; one is topological data remain in Neo4j and 
other is attributed data which is in MS SQL Server and write 
an intermediary program in Java to be used in PAM engine 
which gets input query and data from both databases as given 
in the Figure 6. The PAM engine is consisted on three steps 
which are discussed in detail as below; when it is executed 
after getting query input, first part of the PAM engine gets the 
attributed data based on where clause from the MS SQL 
Server  by executing SQL queries, once the data based on the 
where clause is extracted from MS SQL Server then PAM 
engine materialize the query and results in a separate table in 
SQL Server the query with parameters is stored separately in 
header table and the results are stored in child table with 
header query reference, which benefits when we go for the 
selection next time. Every time query appears it checks in 
header table whether the query is already executed or a new 
query is appears for execution.
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Fig. (7). PAM Engine Execution Flow Chart

G. Softwares Required 

 The below given Table 1 and Table 2 shows the compari-
son between the direct query and using PAM Engine with 
number of fetched records and time taken by each query. The 
time is given in minutes and seconds format the difference 
column in the right showing the time saved while using the 
materialized approach. 

Query 1:

MATCH (p:`publication`)-[:`publishedby`]-> (a:`author`)
WHERE p.year = "2014" and p.type = "article"
RETURN a.Id as author, count(*) as pcount
order by a.Id

Query 2:

MATCH (p:`publication`)-[:`publishedby`]->(a:`author`)
RETURN a.Id as author, p.year as year, p.type as type, 
count (*) as pcount
order by a.Id, p.year, p.type

 Following software's are required for system 
 implementation.
   • Neo4j
   • SQL Server
   • Operating System
   • Java(TM) SE Runtime Environment

 These below queries are sample queries. The Query1 is 
written in cypher language. The query executed on a Neo4j 
database. The author Florian Holzschuher proved experimen-
tally that the Neo4j is best when the database gets larger. 
Neo4j has shown nearly a constant performance when scaling 
from 2,000 to 10,000 people [2]. 

Table 1. Comparison results by Direct Query and by using PAM Engine

Query 1 205402 10:50.2 205400 07:50.2 03:00.0

Query 1 205402 11:32.3 205400 08:32.3 03:00.0

Query 1 205402 09:15.2 205400 08:15.2 01:00.0

Queries Records Time in Records Time in Time in
 Returned MM:SS.0 Returned MM:SS.0 MM:SS.0

Direct Query 
Results From

Graph Database

First Time Using 
PAM Engine

Difference
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is given below in Figure 7. The third and final step of the 
PAM engine is to combine both query results of first step and 
second step which both are now in SQL server format using 
join query of SQL server we can easily extract data. After the 
successful extraction of results, it gives the required output 
and terminates the PAM engine. 

IV. RESULTS

 The following queries are model queries taken on the 
basis related to database. The DBLP database contains the 
publication data, so we have selected the queries which 
generate all the publication count by author and other which 
count the publication type articles of year 2014. 

 Its division into two parts and the comparison of time 
taken for processing is given below. The query has two filters 
one is year and second is publication types. The user wants to 
return only the author Id and publication count order by 
author Id.

 The Query 2 is simple having no filter it only returns the 
author Id, year of publication and total publications order by 
Author Id, year of Publication, and Type of publication
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Fig. (8). Query Processing Time Comparison Chart

 The given Table 3 shows the comparison between First 
materialized query execution time and if the same query 
executed second time. The difference column in the right 
shows the time saved while using the reusability materialized 
approach. 

 The Figure 8 shows the execution time of queries when 
we have performed the experiment directly from DBLP 
dataset or using materialized data and reusing the material-
ized data. The Blue color shows the time which was taken 
when have executed the cypher query directly on Neo4j 
DBLP database, the chart shows it is the most time taking 
query. 

 Materialization idea has always works with some 
minimum cost of updation or modification with almost all 
databases. Kamel et al. worked on semi materialization to 
execute repeated quires in a minimum time with efficiency on 
relational database management systems. The technique is to 
store repeated or most frequent data that shows the intermedi-
ate level of query execution. The most frequent data is used to 
efficiently build the output of query; thus, is an easy way to 
maintain results. Then the author compares his results with 
the other two techniques commonly used to materialize the 
repeated execution of queries which are full materialization 
and query modification. The authors has proved systematical-
ly and shown by simulation. The results have shown that the 
technique of semi materialization has improved query 
response not only for simple queries but also for complex 
queries, views and joins, under the certain working circum-
stances [3].
 
 Semi materialization deals with relational databases 
while in our research we have used the graph databases. We 
have pre-process the databases and divide it in two parts as 
topological and aggregate values. 

 To query databases, there are two important algorithms 
discussed by Shekhar et al. The algorithms are Materialization 
and hierarchical routing. The author says these algorithms are 
very useful in the applications like shortest path, intelligence 
transportation system (ITS) and travelling sales man problem 
(TSP). As the graph database size is growing day by day, the 
materialization technique and hierarchical routing algorithm 
pre computer and stores the results of shortest path view these 
results can be reused any time which increases the perfor-
mance of processing large graph queries [4]. 

 Graphs, network, and Web mining has got much attention 
in recent years. A bundle of literature has been published in 
the area of graph processing web and social network analysis. 
Emerging applications face the need to store and query data 
that are naturally described as graphs. Building Business 
intelligence (BI) solution for graph data is a difficult task.   

 Red color shows the time which was taken when we have 
first executed the query in a PAM engine and the query is 
materialized the difference between the direct query and using 
materialized is little here but in this step the materialization 
cost is also included which is onetime cost. The next Green 
color shows the big difference when we have executed the 
same query second time in materialized environment. The 
difference is huge. It improves the response time and decreas-
es the processing time up to 60% which was the goal of this 
study which have been achieved using the materialization of 
intermediate results.

Table 2. Comparison results by Direct Query and by using PAM 
Engine mparison results by Direct Query and by using PAM Engine

Query 2 4893292 20:32.2 4893290 11:16.7 09:15.5
Query 2 4893292 21:12.9 4893290 12:37.4 08:35.5
Query 2 4893292 21:49.7 4893290 11:20.5 10:29.2

Queries Records Time in Records Time in Time in
 Returned MM:SS.0 Returned MM:SS.0 MM:SS.0

Direct Query 
Results From

Graph Database

First Time Using 
PAM Engine

Differ-
ence

Table 3. Comparison results by Direct Query and by using PAM Engine

Query 1 205400 07:50.2 205400 00:35.9 07:14.3
Query 1 205400 08:32.3 205400 00:34.8 07:57.5
Query 1 205400 08:15.2 205400 00:38.3 07:36.9
Query 2 4893290 11:16.7 4893290 01:15.9 10:00.8
Query 2 4893290 12:37.4 4893290 01:14.8 11:22.5
Query 2 4893290 11:20.5 4893290 01:18.3 10:02.2

Queries Records Time in Records Time in Time in
 Returned MM:SS.0 Returned MM:SS.0 MM:SS.0

First Time Using 
PAM Engine

If Query Appears 
Again in 

PAM Engine

Differ-
ence

V. RELATED WORK



 Relational databases are frequently criticized for being 
unsuitable for managing graph data. Graph databases are 
gaining popularity but they have not yet reached the same 
maturity level with relational systems. [5]
 
 Materialization of data worked as a cache in main 
memory. A materialized view delivers fast access to user data. 
The materialized view need to be updated when primary data 
modified or changed. It is just like a cache memory. Cache 
becomes dirty when the data it copies is updated or modified. 
A materialized view becomes dirty every time the primary 
base relations are changed or modified. Sometimes it is costly 
to maintain a materialized view and get it updated with the 
primary relational data but in most of the cases it is cheaper 
and beneficial especially when the data is repeatedly called. A 
materialized view should not be completely changed when 
primary relation are updated but there should be in a mecha-
nism which recognize and changes only those parts of materi-
alized  view which are changed  but not completely material-
ized view [6].

 Abadi et al. study the use of early and late materialization 
in the C-Store Databases. They focus on standard ware-
house-style queries: read-only workloads, with selections, 
aggregations, and joins. The authors run experiments to deter-
mine when one approach dominates the other and develop an 
analytical model that can be used; for example, in a query 
optimizer to select a materialization strategy. The results show 
that on some workloads, late materialization can be an order 
of magnitude faster than early-materialization while on other 
workloads; early-materialization outperforms late-materializa-
tion by an order of magnitude [7]. 

 Zagorac et al. produced a materialization technique for 
structured web data such as Amazon and to improve the web 
search which helps to answer multi domain queries by access-
ing the heterogeneous web based data [8]. There are so many 
other techniques for materialization like view materialization 
author described an incremental maintenance algorithm for 
views over semi-structured, or schema less, data. The 
algorithm identifies the needed view changes, based on the 
information available from the view specification, the update 
operation, the database state after the update, and some auxil-
iary data structures that are generated when populating the 
view [9].

 Zhao et al. have communicated the difficulty of support-
ing warehousing and Online Analytical Processing databases 
for large multidimensional networks. The authors have exact-
ly calculated the problem and proposed a new data warehous-
ing model for the problem. The author proposed a Graph cube 
model which was specially developed to improve the aggrega-
tion of large graph networks and multi- dimensional attributes 

 By using the materialization of intermediate results for 
graph technique, we have improved the query response and 
minimize the processing time and cost for graph data. We 
have also used a division technique and divided a large graph 
dataset into two parts and apply some processing while divid-
ing. We have used a PAM engine which gets data from both 
databases and gives the required output. The materialization 
of intermediate results has worked as it improved up to 60% 
time on reusability. 

 There is always space for improvement, as in our work-
ing model we have stored the whole query, so when the same 
query appears again with the same parameters than we have 
got the improved response time but there should be a mecha-
nism which partially checks if any of parameter is matched 
then it will not go for that parameter and get only the remain-
ing parameters from primary database and then store all in a 
materialized form. 

 I would like to express my special thanks of gratitude to 
my supervisor Dr. Saif-ur-Rahman as well as SZABIST 
Karachi for giving me this opportunity to do research on the 
topic of Improving Query Response Time for Graph Data 
Using Materialization which helped me in doing a lot of 
research and I learnt new things. I am really thankful. 

[10]. Chen et al. inspects the probability to apply multi-di-
mensional processing on networked data, and designed a 
Graph Online Analytical Processing framework, which is 
categorized into two main classes which are topological 
Online Analytical Processing and informational Online 
Analytical Processing [11]. Aksu et al. worked on the dense 
graph and identified sub graphs of high structure using the k 
core matrix.  The author said that the graph importance is 
increased day by day and the social network graphs content 
gets increased but the topologies changes dynamically, the 
author challenged and proposed that not to just materialize the 
dense graph but also maintain them and keep updated contin-
uously. The authors said that the graph data is now increased 
and cannot processed on a single server machine and on its 
limited memory. The author proposed a distributed algorithm 
for dense graph view. The algorithm store and process graph 
on a horizontally scale [12].
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